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The anisotropic radial distribution function and two-dimensional (2D) structure factor
was calculated for the Cu-1 plane in YBa2Cu3O6+x when x ≈ 0, based on data generated
by a molecular dynamics simulation. The results indicate a stable square lattice and
support the validity of layered two-dimensional screened Coulomb potential used in the
simulation.

1. Introduction

Atomistic simulations are widely used to study the structure of perovskite-type ox-

ides, including high temperature superconducting materials. Typically, interatomic

forces are modeled by pair potentials of the Buckingham type,1–4

Vij(r) = ZiZj
e2

r
+Aije

−r/ρ − Cij
1

r6
(1)

including, occasionally, three-body interactions to fix bond angles.

Such techniques reproduce crystal structure accurately and are highly successful

in approaching problems like defect properties or oxygen diffusion mechanisms.4

However, since the potentials employed are not microscopically-based and depend

on adjustable parameters for each type of bond, they are of limited use studying the

interactions within high-Tc materials. Some theories of superconductivity, especially

those which ascribe a significant role to Coulomb interactions, have implications for

the form of forces. They might be tested indirectly by studying whether they lead

to a microscopically-based explanation of material structure.

2. MD Simulation

High-Tc materials are notable for their layered nature, thus it might be possi-

ble to improve our interionic potentials by departing from the commonly used
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isotropic three-dimensional Coulomb-based potentials. Malozovsky and Fan have

proposed5,6 an extension of the Vissher–Falicov potential7 for materials consisting

of two-dimensional layers of charges, by accounting for the exchange-correlation

effects in cuprates with the Hubbard approximation, which means conventional

methods like the random-phase approximation are no longer adequate. As the

Malozovsky–Fan potential is closely connected to their Coulomb-based approach

to superconductivity,8 there would be much interest in seeing if it helps predict

material structure as well.

We have conducted a molecular dynamics simulation of the Cu-1 plane in

YBa2Cu3O6+x when x ≈ 0, taking account of the Cu ions’ interactions with one

another and with modulating layers of Ba and O above and below. Experimentally,

this is a square lattice of Cu ions, which is an appropriately simple system to test if

a stable lattice can be formed without additional attractive terms like the −Cr−6

in Eq. (1). The Malozovsky–Fan effective Coulomb potential is

Ṽ =
e2ZiZj

κ

(
1

r
− ṽel

)
, (2)

where κ is the dielectric constant. ṽel arises from electron exchange-correlation

interactions:

ṽel(ri − rj) =

∫ ∞
0

dkJ0(k|ρi − ρj |)
[
e−k|zi−zj | − Φ(z)

sinh ck√
A2(k)− 1

× (A(k)−
√
A2(k)− 1)|zi−zj |/c

]
, (3)

in which A(k) = |cosh ck+ (η(k)/ka∗B) sinh ck|, η(k) = 2Π(k)/(1− αP (k)), P (k) =

Π(k)/
√

1 + k2/k2
F, Π(k) = 1−Re

√
1− 4k2

F/k
2 and Φ(z) = − cosπ(zi−zj)/c when

αP (k) > 1 and Φ(z) = 1 otherwise. a∗B = κ/e2m∗ is the effective Bohr radius;

kF is the Fermi wave vector with the convention ~ = 1; and α = 1/a∗BkF is the

interelectronic coupling constant. The most significant adjustable parameters for

the simulation are the dielectric constant κ and the effective mass m∗. Typically,

κ ∼ 5–15 and m/m∗e ∼ 1–5; the existence of a stable lattice is not sensitive to these

parameter values.

The details of the simulation and the qualitative results it produces are given

elsewhere9; here we present figures for a typical anisotropic radial distribution func-

tion and structure factor, which shows quantitatively that a stable square lattice is

obtained. The anisotropic radial distribution function is

g(r) =
A

N2

〈∑
i6=j

δ(r − rij)

〉
, (4)

whereA is the area andN the number of ions. The positional data for g(r), displayed

in Fig. 1, was generated through a MD simulation at T = 500 K, where some defects

have begun to appear in the lattice structure. Overall, however, the lattice retains

its shape.
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Fig. 1. Radial distribution function g(r) for ions in Cu-1 plane; T = 500 K. The lattice constant
is ∼0.385 nm.
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Fig. 2. Anisotropic structure factor S(k); T = 500 K. Real part on the left, imaginary part on
the right.

Figure 2 shows the real and imaginary parts of the structure factor

S(k) = 1 +
N

A

∫
g(r)e−ik·rdr . (5)

Clearly, a stable square lattice is obtained. This is due to the in-plane Malozovsky–

Fan potential having an attractive part, similar to a Lennard–Jones potential.

3. Discussion

Our layered two-dimendsional Coulomb potential reproduces the experimental

square lattice without bond-specific adjustable parameters. This, is, of course, a

simplified model which has its limitations. Firstly, the square (as opposed to a tri-

angular) lattice arises from the symmetry of the overall unit cell, which is imposed
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on the Cu-1 plane in the MD simulation through interactions with modulating Ba

and O layers. Secondly, Eq. (3) is anisotropic in the z direction but isotropic within

the charge layers. This means this simple approximation is not sufficient to repro-

duce the Cu-O chain structures at x ≈ 1. More detailed consideration of Friedel

oscillations and correlation effects should improve the potential.
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