International Journal of Modern Physics B, Vol. 12, Nos. 29, 30 & 31 (1998) 3091–3094 © World Scientific Publishing Company

A TWO-DIMENSIONAL STRUCTURE FACTOR CALCULATION FOR THE Cu-1 PLANE IN YBa₂Cu₃O₆

TANER EDIS*, J. D. FAN, D. BAGAYOKO and J. T. WANG

Department of Physics, Southern University and A&M College Baton Rouge, Louisiana 70813, USA

> Received 1 April 1998 Revised 22 May 1998

The anisotropic radial distribution function and two-dimensional (2D) structure factor was calculated for the Cu-1 plane in YBa₂Cu₃O_{6+x} when $x \approx 0$, based on data generated by a molecular dynamics simulation. The results indicate a stable square lattice and support the validity of layered two-dimensional screened Coulomb potential used in the simulation.

1. Introduction

Atomistic simulations are widely used to study the structure of perovskite-type oxides, including high temperature superconducting materials. Typically, interatomic forces are modeled by pair potentials of the Buckingham type,¹⁻⁴

$$V_{ij}(r) = Z_i Z_j \frac{e^2}{r} + A_{ij} e^{-r/\rho} - C_{ij} \frac{1}{r^6}$$
(1)

including, occasionally, three-body interactions to fix bond angles.

Such techniques reproduce crystal structure accurately and are highly successful in approaching problems like defect properties or oxygen diffusion mechanisms.⁴ However, since the potentials employed are not microscopically-based and depend on adjustable parameters for each type of bond, they are of limited use studying the interactions within high- T_c materials. Some theories of superconductivity, especially those which ascribe a significant role to Coulomb interactions, have implications for the form of forces. They might be tested indirectly by studying whether they lead to a microscopically-based explanation of material structure.

2. MD Simulation

High- T_c materials are notable for their layered nature, thus it might be possible to improve our interionic potentials by departing from the commonly used

*E-mail: edis@phys.subr.edu

3092 T. Edis et al.

isotropic three-dimensional Coulomb-based potentials. Malozovsky and Fan have proposed^{5,6} an extension of the Vissher–Falicov potential⁷ for materials consisting of two-dimensional layers of charges, by accounting for the exchange-correlation effects in cuprates with the Hubbard approximation, which means conventional methods like the random-phase approximation are no longer adequate. As the Malozovsky–Fan potential is closely connected to their Coulomb-based approach to superconductivity,⁸ there would be much interest in seeing if it helps predict material structure as well.

We have conducted a molecular dynamics simulation of the Cu-1 plane in $YBa_2Cu_3O_{6+x}$ when $x \approx 0$, taking account of the Cu ions' interactions with one another and with modulating layers of Ba and O above and below. Experimentally, this is a square lattice of Cu ions, which is an appropriately simple system to test if a stable lattice can be formed without additional attractive terms like the $-Cr^{-6}$ in Eq. (1). The Malozovsky–Fan effective Coulomb potential is

$$\tilde{V} = \frac{e^2 Z_i Z_j}{\kappa} \left(\frac{1}{r} - \tilde{v}_{\rm el}\right) \,, \tag{2}$$

where κ is the dielectric constant. $\tilde{v}_{\rm el}$ arises from electron exchange-correlation interactions:

$$\tilde{v}_{\rm el}(\mathbf{r}_i - \mathbf{r}_j) = \int_0^\infty dk J_0(k|\rho_i - \rho_j|) \left[e^{-k|z_i - z_j|} - \Phi(z) \frac{\sinh ck}{\sqrt{A^2(k) - 1}} \right] \times (A(k) - \sqrt{A^2(k) - 1})^{|z_i - z_j|/c} , \qquad (3)$$

in which $A(k) = |\cosh ck + (\eta(k)/ka_{\rm B}^*)\sinh ck|$, $\eta(k) = 2\Pi(k)/(1 - \alpha P(k))$, $P(k) = \Pi(k)/\sqrt{1 + k^2/k_{\rm F}^2}$, $\Pi(k) = 1 - {\rm Re}\sqrt{1 - 4k_{\rm F}^2/k^2}$ and $\Phi(z) = -\cos \pi(z_i - z_j)/c$ when $\alpha P(k) > 1$ and $\Phi(z) = 1$ otherwise. $a_{\rm B}^* = \kappa/e^2m^*$ is the effective Bohr radius; $k_{\rm F}$ is the Fermi wave vector with the convention $\hbar = 1$; and $\alpha = 1/a_{\rm B}^*k_{\rm F}$ is the interelectronic coupling constant. The most significant adjustable parameters for the simulation are the dielectric constant κ and the effective mass m^* . Typically, $\kappa \sim 5$ –15 and $m/m_e^* \sim 1$ –5; the existence of a stable lattice is not sensitive to these parameter values.

The details of the simulation and the qualitative results it produces are given elsewhere⁹; here we present figures for a typical anisotropic radial distribution function and structure factor, which shows quantitatively that a stable square lattice is obtained. The anisotropic radial distribution function is

$$g(\mathbf{r}) = \frac{A}{N^2} \left\langle \sum_{i \neq j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \right\rangle \,, \tag{4}$$

where A is the area and N the number of ions. The positional data for $g(\mathbf{r})$, displayed in Fig. 1, was generated through a MD simulation at T = 500 K, where some defects have begun to appear in the lattice structure. Overall, however, the lattice retains its shape. A Two-Dimensional Structure Factor Calculation ... 3093

Fig. 1. Radial distribution function $g(\mathbf{r})$ for ions in Cu-1 plane; T = 500 K. The lattice constant is ~ 0.385 nm.

Fig. 2. Anisotropic structure factor $S(\mathbf{k})$; T = 500 K. Real part on the left, imaginary part on the right.

Figure 2 shows the real and imaginary parts of the structure factor

$$S(\mathbf{k}) = 1 + \frac{N}{A} \int g(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r} \,.$$
(5)

Clearly, a stable square lattice is obtained. This is due to the in-plane Malozovsky– Fan potential having an attractive part, similar to a Lennard–Jones potential.

3. Discussion

Our layered two-dimendsional Coulomb potential reproduces the experimental square lattice without bond-specific adjustable parameters. This, is, of course, a simplified model which has its limitations. Firstly, the square (as opposed to a triangular) lattice arises from the symmetry of the overall unit cell, which is imposed

3094 T. Edis et al.

on the Cu-1 plane in the MD simulation through interactions with modulating Ba and O layers. Secondly, Eq. (3) is anisotropic in the z direction but isotropic within the charge layers. This means this simple approximation is not sufficient to reproduce the Cu-O chain structures at $x \approx 1$. More detailed consideration of Friedel oscillations and correlation effects should improve the potential.

Acknowledgments

T. Edis would like to thank J. Gong for his assistance with the figures. This work is supported by DOE under the grant DE-FG05-94-ER25229.

References

- 1. R. C. Baetzold, Phys. Rev. B38, 11304 (1988).
- 2. R. C. Baetzold, Phys. Rev. B42, 56 (1990).
- 3. M. S. Islam and L. J. Winch, Phys. Rev. B52, 10510 (1995).
- 4. M. S. Islam, M. Cherry and C. R. A. Catlow, J. Solid State Chem. 124, 230 (1996).
- 5. Y. M. Malozovsky and J. D. Fan, Phys. Rev. B49, 4334 (1994).
- 6. J. D. Fan and Y. M. Malozovsky, J. Phys. Chem. Solids 11, 1677 (1996).
- 7. P. B. Visscher and L. M. Falicov, Phys. Rev. B3, 2541 (1971).
- 8. J. D. Fan and Y. M. Malozovsky, in these proceedings.
- 9. J. D. Fan, G. L. Zhao, T. Edis and Y. M. Malozovsky, Phys. Rev. B56, 10747 (1997).