
Homework Solutions 7a (Schroeder Chapter 7)

17

(a) The diagrams for bosons just indicate the occupancy of each level.
The ground state is occupied by N particles minus the total number of
particles pushed up into excited states. So without this ground state,
the diagrams are like

214 Chapter 7 Quantum Statistics

Problem 7.17. (Bosonic system with evenly-spaced levels.)

(a) The illustration below shows all system states up to q = 6, with each column represent-
ing a separate system state, and each row representing a single-particle excited state.
The number in each space is the number of particles in that single-particle state, which
for bosons is unlimited. The lowest-energy single-particle state (the ground state) is
not shown; it contains N particles when q = 0, and N minus the total number of
particles in excited states when q > 0.
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(b) Adding the numbers across each row in the q = 6 diagram and dividing by 11, we
obtain the average occupancy of each level when q = 6. From the lowest level to the
highest, the results are
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The average occupancy of the ground state is much larger: N � (35/11). Here’s a plot
of the average occupancy vs. the energy of the level, taking the lowest level to have
energy zero:
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(c) The chemical potential µ is the energy at which the occupancy would be infinite.
Assuming that N is large, this is essentially at ⇧ = 0, the ground-state energy. To
find the best-fit temperature, I plotted the Bose-Einstein distribution on the graph
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(b) There are 11 possible q “ 6 states. The average occupancy for the
excited states is then the result of adding up the numbers across each
row and dividing by 11. The ground state has occupancy N´ 35

11
. With

the ground state energy set to zero, here is a plot:
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Problem 7.17. (Bosonic system with evenly-spaced levels.)

(a) The illustration below shows all system states up to q = 6, with each column represent-
ing a separate system state, and each row representing a single-particle excited state.
The number in each space is the number of particles in that single-particle state, which
for bosons is unlimited. The lowest-energy single-particle state (the ground state) is
not shown; it contains N particles when q = 0, and N minus the total number of
particles in excited states when q > 0.
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(b) Adding the numbers across each row in the q = 6 diagram and dividing by 11, we
obtain the average occupancy of each level when q = 6. From the lowest level to the
highest, the results are
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The average occupancy of the ground state is much larger: N � (35/11). Here’s a plot
of the average occupancy vs. the energy of the level, taking the lowest level to have
energy zero:
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(c) The chemical potential µ is the energy at which the occupancy would be infinite.
Assuming that N is large, this is essentially at ⇧ = 0, the ground-state energy. To
find the best-fit temperature, I plotted the Bose-Einstein distribution on the graph
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(c) At ε “ µ, n̄ Ñ 8. If N is large, this means µ « 0. The plot above
fits the Bose-Einstein distribution for the occupancy graph at kT “

2.2η. Or, you can say that at ε “ µ ` kT , the occupancy should be
1{pe´ 1q « 0.6, and from the data points it looks like this is just above
ε “ 2η.

(d) The entropy values turn out to be the same as the fermionic problem,
7.16, I did as an example:
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above, adjusting T until the fit was good. The plot reproduced here is for T = 2.2⌥/k.
Alternatively, you could just note from Figure 7.7 that at ⇧ = µ + kT , the occupancy
is about 0.6; from our data this point appears to be slightly above ⇧ = 2⌥.

(d) In fundamental units, the entropy is just the natural logarithm of the number of system
states. Here are a table and graph of the values:

q ⌃ S/k

0 1 0
1 1 0
2 2 0.69
3 3 1.10
4 5 1.61
5 7 1.95
6 11 2.40 1 2 3 4 5 6

0.5

1

1.5

2

q = U/η

S/k

(Notice that these values are exactly the same as for the fermionic system treated in
the previous problem.) Calculating the slope from the last two points on the graph, I
obtain T = ⇥U/⇥S = ⌥/0.45k = 2.2⌥/k, in agreement with the estimate of part (c).

Problem 7.18. If up to two particles of a given type can occupy a state of energy ⇧, then
the grand partition function is

Z = e0 + e�(⇧�µ)/kT + e�2(⇧�µ)/kT = 1 + e�x + e�2x,

where x = (⇧� µ)/kT . Therefore the average number of particles in the state is

n̄ = � 1

Z
✓Z
✓x

= � 1

1 + e�x + e�2x

✓

✓x
(1 + e�x + e�2x) =

e�x + 2e�2x

1 + e�x + e�2x
.

A computer-drawn plot of this formula is shown below, for three di⌥erent temperatures,
separated by factors of 4. As you can see, it’s qualitatively similar to the Fermi-Dirac
distribution, but with n̄ ranging from 0 to 2 instead of 0 to 1. (With a bit of algebra you
can prove that n̄ � 1 is an odd function of ⇧� µ, just as nFD � 1

2
is.)

1

2

Problem 7.19. The density of copper (which I looked up in an introductory physics
textbook) is 8.93 g/cm3, and the atomic mass (which I got o⌥ a periodic table) is 63.5 g/mol.
Let’s consider a chunk of copper containing one mole of atoms. Then the mass is 63.5 g,
and the volume is

V =
mass

density
=

63.5 g

8.93 g/cm3
= 7.11 ⇥ 10�6 m3.
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And approximating the slope for 1{kT « ∆S{∆U again gives kT «

2.2η.

24 The neutron star is a bit simpler than the white dwarf. The only
particles are neutrons, and N “M{mn. The kinetic energy is then

K “
3

5
NEF “

3h2

40mn

ˆ

M

mn

˙5{3ˆ
9

4π2R3

˙2{3

“
β

R2

with the constants being packed into β. The gravitational potential energy
is the same as the white dwarf, so

U “ K ` V “
β

R2
´
α

R

with α “ p3{5qGM2. Minimizing the energy with dU{dR “ 0 gives, for a
one solar mass neutron star,

R “
2β

α
“ p0.093q

h2

Gm
8{3
n M1{3

“ 1.23ˆ 104 m

Its density is

ρ “
M

4
3
πR3

“ 2.6ˆ 1017 kg/m3
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This is comparable to the density of an atomic nucleus. The Fermi temper-
ature is

TF “
1

k

h2

8mn

ˆ

3N

πV

˙2{3

“
h2

8km
5{3
n

ˆ

9M

4π2

˙2{3
1

R2
“ 6.6ˆ 1011 K

This is higher than a white dwarf. In any case, the assumption that T ! TF
is safe.

A neutron star becomes relativistic and unstable when the average neu-
tron kinetic energy is comparable to mnc

2 “ 940 MeV. The average K “
3
5
kTF “ 34 MeV for a one solar mass neutron star, which is too small by

1{28. But since EF9M
4{3, to get into the relativistic regime, we would need

283{4 “ 12 solar masses. This is a crude calculation; astrophysicists calculate
the real critical mass at about 2 to 3 solar masses.

34

(a) Say g0v ă g0c. In that case, if µ were to remain constant, there would
be fewer electrons added to the conduction band than removed from
the valence band. That can’t happen, and therefore µ would have to
decrease with increasing T . If g0v ą g0c, µ will have to increase with T .

(b) The number of conduction electrons is

Nc “

ż 8

Ec

dE gpEqn̄FDpEq “ g0c

ż 8

Ec

dE

?
E ´ Ec

epE´µq{kT ` 1

with kT ! Ec ´ µ,

Nc « g0c

ż 8

Ec

dE

?
E ´ Ec

epE´µq{kT
“
g0cpkT q

3{2

epEc´µq{kT

ż 8

0

dx x1{2e´x “

?
πg0cpkT q

3{2

2 epEc´µq{kT

(c) The occupancy for holes is 1´ n̄FD. Therefore

Nh “

ż Ev

´8

dE gpEq r1´ n̄FDpEqs “ g0v

ż Ev

´8

dE

?
Ev ´ E

epµ´Eq{kT ` 1

This is much like before. When kT ! µ´ Ev, we get

Nh « g0v

ż Ev

´8

dE

?
Ev ´ E

epµ´Eq{kT
“
g0vpkT q

3{2

epµ´Evq{kT

ż 8

0

dx x1{2e´x “

?
πg0vpkT q

3{2

2 epµ´Evq{kT
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(d) Nh “ Nc must be true at any T . Therefore,

g0c
g0v

“
epEc´µq{kT

epµ´Evq{kT
“ epEv`Ec´2µq{kT

Taking the log, we find how µ deviates from the center point between
the two bands:

µ “ 1
2
pEv ` Ecq `

1
2
kT lnpg0v{g0cq

(e) For Si, lnp0.44{1.09q “ ´0.91. Therefore µ shifts by about 1
2

1
40
p´0.91q “

´0.012 eV. This is considerably smaller than the band gap of 1.1 eV,
so the approximations made should work.

43

(a) Energy density:
U

V
“

8π5

15

pkT q4

phcq3
“ 0.855 J/m3

(b) Spectrum:
Problem 7.44 247

1 2 3 4 5 6
ϵ (eV)

visible

To locate the visible portion of the spectrum, note that the red end is at 700 nm
which corresponds to a photon energy of ⇧ = hc/⌦ = 1.77 eV, while the violet end is
at 400 nm which corresponds to a photon energy of 3.1 eV. I’ve shaded this region in
the graph.

(c) Since kT = 0.50 eV, the limits of the visible range are at x = 1.77/0.5 = 3.54 and
x = 3.1/0.5 = 6.2. Therefore the fraction of energy in the visible range is

⌘ 6.2

3.54

x3

ex � 1
dx

�⌘  

0

x3

ex � 1
dx =

15

�4

⌘ 6.2

3.54

x3

ex � 1
dx.

I evaluated the integral numerically with the Mathematica instruction

(15/Pi^4)*NIntegrate[x^3/(Exp[x]-1),{x,3.54,6.2}]

which returned the number 0.36831. So about 37% of the sun’s energy is within the
visible range.

Problem 7.44. (Number of photons in a photon gas.)

(a) To compute the number of photons, we can simply sum the Planck distribution over
all “modes,” including a factor of 2 to count the two polarization states for each wave
shape:

N = 2
✏

nx

✏

ny

✏

nz

nPl(⇧) = 2
✏

nx,ny,nz

1

ehcn/2LkT � 1
.

(Except for the absence of a factor of ⇧, this is the same as equation 7.81.) The steps
from here on are the same as in the text: Convert the sum to an integral, and carry
out the integral in spherical coordinates where the measure includes a factor of n2 and
the angular integrals give a factor of 4�/8. Then change variables to x = hcn/2LkT :

N = 2 · 4�

8
·
⌘  

0

n2

ehcn/2LkT � 1
dn = �

⌃2LkT

hc

⌥3
⌘  

0

x2

ex � 1
dx

= 8�V
⌃kT

hc

⌥3
⌘  

0

x2

ex � 1
dx.

I evaluated the integral numerically with Mathematica:

NIntegrate[x^2/(Exp[x]-1),{x,0,Infinity}]

c⌅2001, 2016 Pearson Education, Inc. All rights reserved. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

(c) Visible light goes from about 1.77 eV to 3.1 eV. With kT “ 0.5 eV, we
have to evaluate

ż 3.1{0.5

1.77{0.5

dx
x3

ex ´ 1
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and divide this by the full energy in the spectrum,

ż 8

0

dx
x3

ex ´ 1
“
π4

15

Done numerically, this results in 0.37.

44

(a) To get the number of photons, we need to sum the occupancy of each
state. With a factor of 2 to account for the two possible photon spin
states,

N “ 2
ÿ

nx,ny ,nz

1

ehcn{2LkT ´ 1

As in the text, approximate this as an integral in spherical coordinates
(so the eighth of a sphere gives π{2), and this gives you the desired
result. If you then numerically evaluate the integral, you get

N “ p2.404q 8πV

ˆ

kT

hc

˙3

(b) With equation 7.89, we get S
N
“ 3.60 k

(c) The photon density is

N

V
“ p2.404q 8π

ˆ

kT

hc

˙3

For 300 K, this gives 5.5ˆ 1014{m3. For 1500 K, we get 6.8ˆ 1016{m3.
And for 2.73 K, we end up with 4.1 ˆ 108{m3. The cosmic microwave
photon density in the universe is much larger than the density of matter
overall.
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