
How Gödel’s Theorem Supports the Possibility of Machine

Intelligence

Taner Edis
Department of Physics, Southern University and A & M College, Baton Rouge LA
70813, U.S.A. ∗

Abstract. Gödel’s Theorem is often used in arguments against machine intelli-
gence, suggesting humans are not bound by the rules of any formal system. However,
Gödelian arguments can be used to support AI, provided we extend our notion of
computation to include devices incorporating random number generators. A com-
plete description scheme can be given for integer functions, by which nonalgorithmic
functions are shown to be partly random. Not being restricted to algorithms can be
accounted for by the availability of an arbitrary random function. Humans, then,
might not be rule-bound, but Gödelian arguments also suggest how the relevant sort
of nonalgorithmicity may be trivially made available to machines.

Keywords: human nonalgorithmicity, Gödel’s Theorem, randomized computation,
randomness

1. Not bound by rules?

Gödel’s celebrated Incompleteness Theorem has often been thought
to demonstrate the impossibility of a completely materialist theory of
mind. More concretely, it has suggested that machine intelligence is
a fundamentally misguided research program. The Gödelian argument
takes may forms. For example, Lucas (1961) observed a human would
be able to construct a Gödel sentence for any given formal system
powerful enough to be interesting. The human mind would always be
able to do better than a machine by virtue of not being bound by
any rigid set of rules. There appears to be a basic ‘Gödelian intuition’
common to most critiques of AI based on Gödel’s Theorem :

(G1) Human Intelligence is not bound by rules. We are not locked into any

formal system, always able to step outside of any set of axioms we happen to

be working in.

If this is correct, no algorithm, however complex, will be able to ade-
quately simulate human intelligence. The human mind ‘computes’ some
kind of nonalgorithmic function.

(G1) is an empirical claim. However, it is difficult to interpret (Den-
nett 1972), and there is no test known to distinguish between human
∗ (e-mail edis@phys.subr.edu)

c© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

goedel.tex; 2/04/2001; 11:44; p.1

2 Taner Edis

performance of a task and that of an arbitrarily complicated computer
program. Algorithmicity simply is not a very strong constraint on be-
havior. One way to see this is to treat (G1) as a physical claim. Whether
(Gl) – essentially a denial of the Church-Turing thesis for humans –
is correct depends on features of the world, like whether physics is
fundamentally continuous (Cleland 1993). But it is possible (though
perhaps not likely) that one day we will discover our present physics is
an approximation to an underlying ‘digital mechanics’ (Fredkin 1990).
If this happens, we would expect practically nothing to change con-
cerning the task of explaining human intelligence or achieving machine
intelligence. Whether the universe is an extremely complex cellular
automaton or not seems as relevant to AI as quantum mechanics is
to civil engineering. Yet Gödelian arguments, like claims that classical
mechanics cannot accommodate consciousness (see Ludwig 1995), turn
on precisely such distinctions.

The most recent revival of the Gödelian argument (Penrose 1989,
1990, 1994) attempts to give claims like (G1) a firmer empirical basis.
Penrose not only argues that humans are not restricted by algorithms,
but also speculates on how the nature of human intelligence may be
connected to the fundamental structure of physics. Penrose’s views have
drawn severe criticism,1 and AI as a research program will have to
stagnate considerably before any such grandiose anti-AI scenario gains
acceptance. Nevertheless, (Gl) does capture something important about
human intelligence. If it is only set aside as empirically unsupported,
the Gödel–Lucas–Penrose argument will be periodically resurrected by
critics of AI.

In the following, I will argue that something very like (G1) is proba-
bly true, though for quite ordinary empirical reasons having nothing to
do with exotic new physics: The missing ingredient in an algorithm is
something quite pedestrian: randomness. The Gödelian intuition, when
understood properly, ends up supporting machine intelligence.

2. Nonalgorithmicity without oracles

If mind is beyond the machine, it must at least not be equivalent to a
set of instructions some pile of electronics can execute. However, not
just any nonalgorithmicity will do. For example, a random function
is maximally nonalgorithmic, in the sense that only a finite number
of bits in a random sequence can be specified by a finite algorithm
(Chaitin 1987). But the ability to generate a haphazard bit sequence
has no obvious connection either with intelligence or (G1). If human
intelligence is distinctive, it must be able to do better than computers

goedel.tex; 2/04/2001; 11:44; p.2

How Gödel’s Theorem Supports the Possibility of Machine Intelligence 3

in performing well-defined tasks with meaningful results. Consider Tur-
ing’s halting function as an example of a meaningful nonalgorithmic
function. We can specify exactly what h does, although we cannot
produce an algorithm for it. For any program p,

h(p, n) =
{
1 p(n) halts,
0 p(n) does not halt.

Computing h would sharply set us apart from computers.
Having an oracle for a meaningful function like h is the most straight-

forward way of achieving nonalgorithmicity. However, this is an extrav-
agant claim if made about humans. Furthermore, it is not clear what
the availability of any definite oracle has to do with (G1). If the brain
could somehow intuit h, we would still be rule-bound in many other
tasks. To give the claim that humans are not bound by any system of
rules concrete content, we have to see how nonalgorithmicity can exist
without oracles for functions like h.

The Gödelian intuition can be stated in a modest form, without
claiming the availability of any specific nonalgorithmic function. The
thrust of (G1) is that humans are not subject to the kind of limitation
which arises solely because an algorithm is a rule-bound way of per-
forming a task. We can take our inspiration from Gödel’s Theorem. We
might have a theorem-proving algorithm, even a very good theorem-
proving algorithm. But we can construct a case where it must fail solely
because it is a system of rules. Perhaps, then, (G1) can be refined to
situate human intelligence somewhere between rigid algorithms and
magically available oracles:

(G2) Human intelligence is not bound by rules, or restricted to any particular

set of algorithms. We can succeed in cases where algorithms must fail on account

of being algorithms, even though we do not have meaningful oracles available

to us.

We can illustrate oracle-free nonalgorithmicity by a very simple cop-
and robber game (Figure 1). There are two houses which a cop and a
robber can move in between. The cop and robber start in different
houses. Each turn, the players have the option of changing houses, or
staying put. If they end up in the same house, the robber is caught and
the game is over.

Let us say the cop conducts her house-to-house search according to
regulations in the police manual. However, there is no general algorithm
for catching the robber. For if the robber follows the same algorithm
for switching or staying – perhaps having learnt the contents of the
police manual – he will never be caught.

Even though this game is extremely simple, it has the basic Gödelian
flavor. The algorithm in the police manual will fail for some robbers.

goedel.tex; 2/04/2001; 11:44; p.3

4 Taner Edis

Cop Robber

0: stay 0: stay

-

�

1: move

1: move

Figure 1. The moves of the cop and robber can be described as bit sequences. If the
algorithms for the sequences match, the robber eludes capture.

The police chief knows exactly what kind of robber they will fail with.
So, like adding a Gödel sentence to the list of axioms of a theorem-
proving algorithm, the chief can try and compensate by complicating
the police manual. But just as theorem-provers cannot be patched up,
since they generate a new Gödel sentence, no amount of tinkering will
perfect the police manual. A mathematician observing the game can
always construct a robber-algorithm for which the cop must fail – it is
simply the same algorithm she follows.

This game allows for very little difference between search strategies;
other nonalgorithmic tasks are more interesting. However, solving the
cop’s problem, which arises entirely from being rule-bound, gives us an
idea of what (G2) means. The solution is simple. In decision theory,
games involving intelligent opponents can call for randomized decision
rules (Berger 1980, pp. 10–13). If the cop acts randomly, tossing a coin
to decide whether she will switch or stay, she will catch the robber
in a finite number of turns. Capture is certain if the robber behaves
according to an algorithm, and it has probability 1 otherwise.

This suggests that the key to constructing machines which behave
according to (G2) is to equip them with a random bit generator. By
virtue of being rule-free, and quite useless aside from being rule-free, a
random function may be exactly what we need.

For randomness to help in less simple-minded tasks than capturing
the robber, we need to be able to describe complicated strategies which
are partly algorithmic and partly random. The natural way to do this is
to use a random bit generator ρ as an oracle, i.e. employ a ‘probabilis-
tic Turing machine’.2 This oracle does not stand for any meaningful
nonalgorithmic function – it is only there to provide a haphazard bit
sequence. In this way, we can describe more complex strategies. For
example, a certain nonalgorithmic function u could be described as:

function u(n)
if (n is odd) then u(n) = 1
else u(n) = ρ(n)

goedel.tex; 2/04/2001; 11:44; p.4

How Gödel’s Theorem Supports the Possibility of Machine Intelligence 5

end

According to (G2), we cannot rely on ρ(n) producing any particular
random sequence in order to make use of the function u(n). Only the
fact that ρ gives a patternless bit sequence should be relevant. This
means the above description for u(n) applies to a set of functions, and
ρ must stand for the set of all random functions. So u(n) describes the
set of functions which take on random values for even arguments, and
are equal to 1 otherwise. As a strategy, u must work independently of
any particular function r ∈ ρ which a random bit generator actually
produces.

This gives us a language describing sets of functions, including at
least some which are nonalgorithmic. We can use ρ in arbitrarily com-
plicated ways to specify all sorts of functions in between algorithms
and full-scale randomness. We will now need to prove a completeness
theorem: every function, no matter how nonalgorithmic, falls in a set
finitely described by a scheme like that for u above. Furthermore, every
function has a finite ‘minimal description’ exhibiting its algorithmic
structure, leaving its nonalgorithmic aspects to a random sector. We
will use completeness to show how randomness, and only randomness,
allows a machine to satisfy (G2).

The idea behind completeness is simple. We know how to specify
algorithms for certain functions. We also have a concept of random-
ness: there are sequences for which no algorithm can specify more than
a finite number of bits. Completeness is the claim that all nonalgo-
rithmicity can be described by randomness. A finite partly random
description exists for every function.

Completeness is also instrumental in blocking a possible objection
to the thesis of this paper. If combining algorithms and randomness
could not finitely describe some functions, there would be too much
temptation to argue that the peculiar quality of mind resides in just
that part of function space beyond both algorithms and randomness.
While (G2) could still be correct, there would be another level of
incompleteness which would give rise to another variety of Gödelian
objection to AI. If Gödelian objections are not only to be deflected but
harnessed in support of machine intelligence, we must demonstrate that
the inclusion of randomness leads to a complete description scheme.

3. A completeness theorem

Following Chaitin (1987), we start with randomness in finite sequences.
A finite binary sequence can always be described by specifying an al-
gorithm. Sequences containing patterns, such as o = 1111111111 . . .

goedel.tex; 2/04/2001; 11:44; p.5

6 Taner Edis

can be described by a very short algorithm, while for others like r =
011010111011001 . . ., we can do no better than to provide a table
listing the value of r(n) for each n. Such descriptively incompressible
sequences are ‘algorithmically random’.

For a formal definition, we need the concept of algorithmic complex-
ity:

H(s) ≡ min
U(p)=s

|p| (1)

where p is a program string used by a universal computer U to produce
the sequence s. The complexity H(s) is the minimum length among
programs that reproduce s. Program strings must be in a self-delimiting
language; i.e. no valid program may be a prefix of another (Chaitin
1987, p. 106). Ordinary computer languages are prefix-free, as they are
required to have properly balanced ‘end’ instructions or parentheses.
The criterion for algorithmic randomness is H(s) ≈ |s|, i.e. the minimal
algorithm for s must be about equal in length to s itself.

An infinite sequence r is random if the complexity of its initial seg-
ment rn of length n ‘does not drop arbitrarily far below n: lim inf H(rn)−
n > −∞’ (Chaitin 1987, p. 134) or

∃c∀n [H(rn) ≥ n− c] (2)

Equivalently, random infinite sequences are the n → ∞ limit of al-
gorithmically random finite sequences. Let the set of algorithmically
random sequences of length n be

ρn = {sn|H(sn) ≥ n+O(1)} (3)

where O(1) denotes a function bounded from above and below (Chaitin
1987, p. 111). The set of random sequences is then ρ = limn→∞ ρn.

We now need a way of describing functions by combining algorithms
and randomness. Note that the basis of algorithmic randomness is that
for some parts of a sequence, we can do no better than looking up bits in
a table. So we define a literal-free language, designed to separate table-
lookups from the algorithmic structure of a function. All references
to literal bit values are done through table-lookups, by a special type
of function call. The function u of the previous example will now be
defined as:

function u(n)
if (n is odd) then u(n) = ρ()
else u(n) = ρ(i(n))

end

table ρ

goedel.tex; 2/04/2001; 11:44; p.6

How Gödel’s Theorem Supports the Possibility of Machine Intelligence 7

100010011...

Here, i(n) = n/2 + 1, and ρ is a function returning the leading bit
in a table with no arguments, or the nth bit if an offset n is provided.
The function u defines a sequence 0101011101011111. . .

In a literal-free language, actual numbers – the 0’s and 1’s – appear
only in tables. This has a number of advantages: (i) it emphasizes the
structure of table use which goes into algorithmic randomness; (ii) while
normal languages can be simulated within a literal-free language, this
is more expensive in terms of program size, so minimal programs use
table-lookups; (iii) by replacing table functions with ρ denoting the set
of random functions, a literal-free language is immediately convertible
to a language describing function sets. For convenience, we introduce
another condition: our language will have only a single table, which is
simply a bit string following the algorithm sector of the program.

Such a language can describe all functions. For example, consider
a function b which is an infinite collection of algorithms, all applying
to their own part of parameter space; i.e. b(n) = tj(n)(n). This will be
described as:

function b(n)
cj = j(n)’th code segment in ρ
b(n) = U(cj , n)

end

table ρ
. . . [code segment for t1]. . . [code segment for t2]. . .

Scanning from the beginning of the table ρ, we find an appropriate
code segment c1 for j = 1, then find another algorithm in the sequence
following where c1 left off, and so on. If there is no relation whatsoever
between the tj , a random table ρ is required. In proving completeness,
we will see that we can find descriptions for all functions where (i) the
table sector is random, and (ii) the instruction segment preceding the
table is finite in length.

We now define our function description scheme, beginning with:

S ≡ {s|s is an infinite bit string} (4)
F ≡ {f |f(n) ∈ {0, 1}} (5)
D : S 7→ F , D(p) = U(p, •) (6)

The description we seek is a map D from program strings to functions, a
sort of universal computer. We restrict our attention to total predicate
functions since they are straightforwardly equivalent to sequences; this

goedel.tex; 2/04/2001; 11:44; p.7

8 Taner Edis

will not affect the generality of the completeness proof. The language
defined by D is:

1. Literal-free, as described above. A program p = pi + pρ, a concate-
nation of an instruction segment and a semi-infinite table sector.
We require |pi| <∞.

2. Prefix-free in pi. The instruction segment has a definite end; every-
thing that follows is part of the table.

3. Syntax-free: any bit string p is a valid program string with proba-
bility 1 (Chaitin 1987, p. 92). This is for convenience only.

Note that program strings are infinite, which means uncomputable
functions are describable by D. The program-size cost function C then
needs to be modified:

C(p) ≡ min
D(pn)=D(p)

n (7)

i.e. the cost is the length of the shortest initial segment of the program
string sufficient to fully specify the function. In the following, we shall
use |p| to stand for C(p), since C is a kind of ‘length’ for program
strings. The complexity is defined as in Equation (1),

H(fn) ≡ min
D(p)n=fn

|p| (8)

where fn is the initial segment of length n of the sequence defined by
function f . H(f) = H(f∞) < ∞ iff f is a computable function, since
it will not require an infinite table to list function values.

Now we can define a recursively enumerable description scheme
based on D. We simply label function sets by the finite strings pi

corresponding to the instruction segments. Table references ρ() now
designate the set of random functions. With P i standing for the set of
instruction segments:

D∗ : P i 7→ F, D∗(pi) = {f |f = D(q) where q ∈ ρ ∧ qi = pi} (9)

Proposition 1 Every function is finitely described by D∗, or

∀f ∈ F ∃ pi ∈ P i
(
f ∈ D∗(pi)

)
(10)

This can be proven by demonstrating the truth of another proposition:
Proposition 2 Every function can be described by an infinite random
sequence;

∀f ∈ F ∃ p ∈ ρ (f = D(p)) (11)

goedel.tex; 2/04/2001; 11:44; p.8

How Gödel’s Theorem Supports the Possibility of Machine Intelligence 9

This will be expressed as F = D(ρ) for short.
Proposition 2 implies Proposition 1. Recall that every program p

is prefix-free in its initial instruction segment pi, followed by a semi-
infinite table sequence pρ. All |pi| < ∞, i.e. p codes for an instruction
segment terminated by an ‘end’ instruction, or balanced parentheses,
or some equivalent device. If p ∈ ρ, it must have an initial segment that
terminates in this fashion. Note that it must terminate: otherwise there
would be a pattern in the sequence (e.g. if ‘en’ was coded for, it could
not be followed by a ‘d’), which is not present in random sequences
by definition. Since all possible finite pi segments are included in ρ,
F = D(ρ) implies Proposition 1.

Now, let us focus on initial segments of length n as in Equation
(3). Let m(fn) be the lowest-cost program reproducing fn, the initial
segment of function f ; i.e. |m(fn)| = H(fn). m(fn) has two important
properties:

1. m(fn) is itself an algorithmically random sequence: If H(m) were
significantly less than |m|, there would exist a string s, interpretable
as a program for m, which was less costly. In that case, an imple-
mentation of the function D(s) would be the minimal program,
so that |m(fn)| > H(fn). Since the cost of a subroutine for D is
bounded,

H(m(fn)) = |m(fn)|+O(1) (12)

In other words, m(fn) ∈ ρ|m| as defined in eq. (3).

2. ∀n |m(fn+1)| ≥ |m(fn)|: each additional bit either fits the extrapo-
lation of the present minimal program, in which case |m| does not
change, or fits a new minimal program which must be costlier than
the previous one.

We now use the algorithmic randomness of m(fn) to show that the
minimal program for any function is a random sequence. Consider the
limit n→∞. Since |m(fn)| is a non-decreasing function of n, it either
goes to infinity with n, or converges to a finite value. limn→∞ |m(fn)| <
∞ means the function is computable. This trivially fits Proposition 2.

For the |m| → ∞ case, we have

lim
n→∞

m(fn) ∈ lim
|m(fn)|→∞

ρ|m(fn)| ⇒ m(f∞) ∈ ρ (13)

The fact that m(f∞) is random proves Proposition 2. As m(fn)
grows with n, |mi| always remains finite. With uncomputable sequences,
only the cost of the random table sector grows to infinity. The uncom-
putable part of a function becomes extracted out to a random sec-
tor, leaving a finite minimal description m∗ displaying the algorithmic
structure of the function.

goedel.tex; 2/04/2001; 11:44; p.9

10 Taner Edis

4. A random world

So now we have a completeness theorem along with Gödel’s Incomplete-
ness Theorem. Gödelian arguments concern activities such as mathe-
matics, where humans produce results expressible by a finite bit se-
quence. And in these cases, human behavior must be describable as
a partly random function. There is no other option. We now need to
interpret what such a result means, under the assumption that humans
do not have access to any meaningful oracle.

No algorithm can compute more than a finite number of bits in a
random sequence. This sort of randomness exists in the very structure
of mathematics; e.g. the function telling us whether a given exponential
diophantine equation has a finite or infinite number of solutions is ran-
dom (Chaitin 1987, p. 159). Every nonalgorithmic function is at least
partly random in exactly this manner. The halting function h has a min-
imal description m∗(h) which is partly random and partly algorithmic,
for we know many special cases for which we can determine h(p, n). For
example, we can prove that certain programs containing no branching
instructions will halt, and we know how to detect certain endless loops
which ensure p will not halt. But there must be randomness in m∗(h),
and we can only determine a finite number of the relevant random bits
in the best of circumstances. Knowledge of randomness in such cases
only gives us a precise description of our ignorance.

Of course, it is still possible that we magically know the precise
random sequence needed to compute a meaningful nonalgorithmic func-
tion. One way of doing this is if we could somehow directly observe the
relevant random sequence. The sequence of measurements of a quantum
two-state system prepared a certain way is a random r ∈ ρ. We can
‘compute’ r(n) simply by performing n measurements. This suggests
that if we were capable of observing a Platonic realm of mathematical
truths, we might be able to ‘compute’ meaningful nonalgorithmic func-
tions. Gödelian objections to AI tend to involve claims about the nature
of mathematical inspiration; indeed, Penrose advocates mathematical
Platonism, as did Gödel himself (Wang 1987, p. 188). But it is clear
that Platonism is not required to satisfy the Gödelian intuition about
not being rule-bound.

The completeness theorem tells us that if humans are nonalgorith-
mic, they do in fact rely on a random function. If, following (G2), we
also assume we do not have access to meaningful oracles, this means
we cannot depend on any particular r ∈ ρ being available to us: r
must be arbitrary. The only relevant fact must be that r is completely
haphazard. And if not being rule-bound is all that is being claimed
for humans (no meaningful oracles or Platonism), then completeness

goedel.tex; 2/04/2001; 11:44; p.10

How Gödel’s Theorem Supports the Possibility of Machine Intelligence 11

shows that randomness, and only randomness, provides us with exactly
this feature.

Simple illustrations of how a strategy using randomness is not trapped
by the rules of any formal system are easy to come by. Our cop-and-
robber game is one, so are more complex variations on similar themes
that is the province of game theory. Another familiar example of ran-
domness being useful to avoid the limitations of rules is in numerical
integration. Monte Carlo integration must fail for some functions if
they are evaluated at points determined by an algorithm, e.g. a pseu-
dorandom number generator. If we know the algorithm, we can design
a function for which the integration result will be a gross mistake.
With true randomness, no such failure can be guaranteed, and long-run
convergence is ensured.

A more complex case where randomness may be of use is learning.
For example, an algorithm to find out what a function is by sampling
its output must fail for certain functions we can construct by virtue
of knowing the learning algorithm. Every inferential algorithm must
have such blind spots (Angluin and Smith 1987). Here too, we would
expect randomness to help, in much the same way as in the cop-and-
robber game. Because of pragmatic constraints on what makes a good
learning strategy, we would expect that while randomness helps, it
is best used in a rather complicated manner. For example, we can
randomly generate algorithms, or use random variations from a current
algorithm, to ensure we are not locked into any particular strategy.
Addressing learning strategies in more detail is beyond the scope of
this paper, aside from noting that use of a random number generator
is necessary to avoid blind spots.

So we can refine our ideas about human nonalgorithmicity further,
in a way favorable to machine intelligence. There are functions like the
halting function or the function telling us about diophantine equations,
which are at least partly beyond the capabilities of machines. But with-
out Platonic magic, these seem to be intractable for human reasoning
as well. What we can achieve is the ability not to be restricted by
any particular set of rules. This nonalgorithmicity without oracles is
available to machines as well.

(G3) Human intelligence, and the behavior of machines incorporating random-

ness, is not restricted by any set of rules. There are tasks for which no general

algorithm exists, but which can be solved by use of an arbitrary random number

generator to ensure we are not locked into any particular algorithm.

Whether (G3) is actually true of humans, and how relevant random-
ness is to human intelligence, are empirical questions which need de-
tailed consideration. However, our ordinary scientific knowledge about

goedel.tex; 2/04/2001; 11:44; p.11

12 Taner Edis

the world gives us reason to suspect human reasoning has a random
aspect.

The possible role of randomness in learning suggests an analogy
to Darwinian evolution as a way of constructing new and complex
structures from modest beginnings. This process need not be exactly
analogous to biological evolution; only the potency of randomness cou-
pled with selective retention of new features is relevant. Contemporary
supporters of AI often see an analogy between evolution and intelli-
gence, emphasizing a ‘generate-and-test’ process (e.g. Dennett 1995).
This concept of mechanical thinking fits in well with (G3). It also is
applicable to humans. Evolution is a standard argument in favor of
mind as a physical process (e.g. Churchland 1988, pp. 20–21); if a
process of random variation and selection were instrumental to the
operation of the brain, this would come as no surprise.

The Darwinian analogy is a rough one, however. Much of our rea-
soning, even in coming up with new conjectures, does not depend on
a strictly blind process of variation (Thagard 1988, pp. 102–105). All
(G3) requires is that randomness be involved at some level in the brain,
in order to prevent us being locked into any particular algorithm. It
is not helpful in deciding exactly how randomness is used. Just as a
highly abstract Turing machine says little about the hardware of a
real-world computing device, the possible availability of randomness
does not constrain the brain very much. However, we can at least say
that randomness is in fact available – the physical world is awash with
noise.

An important source of noise for (G3), since we are concerned with
strict randomness and not just extremely high complexity, is the ran-
domness in quantum physics. Quantum spookiness has often been thought
to be a basis for criticizing machine intelligence, e.g. by providing
a peculiar ‘unity of consciousness’ (Hodgson 1991, pp. 383–387), or
giving consciousness a role in deciding experimental outcomes. None
of this is required by quantum mechanics (Mulhauser 1995, Stenger
1995), but the belief that the way humans think is deeply connected
to fundamental physics persists. (G3) suggests a legitimate role for
quantum mechanics in explaining human thought: it is our best reason
for believing there is randomness in the world.

For the Gödelian intuition that we are not bound by rules to be
true, we need only be able to behave partly randomly. Allowing use
of a random number generator is a trivial extension of the notion of
mechanical computation. There is randomness in the world, which can
be plausibly said to have a role in our thinking. Given all this, there
is no more reason to invoke Gödel’s Theorem as a criticism of AI. The

goedel.tex; 2/04/2001; 11:44; p.12

How Gödel’s Theorem Supports the Possibility of Machine Intelligence 13

notion that we are not rule-bound, far from undermining the possibility
of machine intelligence, actually supports it.

Acknowledgements

Thanks are due V.J. Stenger for helpful discussions.

1. See comments following Penrose 1990, contributions to Psyche 2,
May. 1995;
‘http://psyche.cs. monash.edu.au/psyche-index-v2-l.html#som’, and
Grush and Churchland 1995.

2. A probabilistic Turing machine is a Turing machine with the extra
ability to toss a fair coin. Such machines have been studied for their
theoretical interest; they can be quite powerful in some instances
(Karpinski and Verbeek 1996).

References

Angluin, D., and C.H. Smith. (1987) ‘Inductive Inference’, in S. Shapiro (ed.,)
Encyclopedia of Artificial Intelligence, Vol. l, New York, NY: Wiley, pp. 409–418.

Berger, J.0. (1980) Statistical Decision Theory, New York, NY: Springer Verlag.
Chaitin, G.J. (1987) Algorithmic Information Theory, Cambridge, UK: Cambridge

University Press.
Churchland, P.M. (1988) Matter and Consciousness (revised ed.), Cambridge, MA:

MIT Press.
Cleland, C.E. (1993) ‘Is the Church-Turing Thesis True?’, Minds and Machines, 3,

pp. 283–312.
Dennett, D.C. (1972), Review of J.R. Lucas, The Freedom of The Will, in Journal

of Philosophy, 69, pp. 527–531.
Dennett, D.C. (1995), Darwin’s Dangerous Idea, New York, NY: Simon and Schuster.
Fredkin, E. (1990) ‘Digital Mechanics’, Physica D 45, pp. 254–270.
Grush, R. and P.S. Churchland. (1995) ‘Gaps in Penrose’s Toilings’, Journal of

Consciousness Studies, 2, pp. 10–29.
Hodgson, D. (1991), The Mind Matters, Oxford, UK: Clarendon Press.
Karpinski, M. and R. Verbeek. (1996), ‘On Randomized versus Deterministic

Computation’, Theoretical Computer Science, 154, pp. 23–39.
Lucas, J.R. (1961), ‘Minds, Machines, and Gödel’, Philosophy, 36, pp.112–127.
Ludwig, K. (1995), ‘Why the Difference Between Quantum and Classical Physics is

Irrelevant to the Mind/Body Problem’, Psyche, 2, p.16.
Mulhauser, G.R. (1995) ‘Materialism and the “Problem” of Quantum Measurement’,

Minds and Machines, 5, pp. 207–217.
Penrose, R. (1989), The Emperor’s New Mind, Oxford, UK: Oxford University Press.
Penrose, R. (1990) ‘The Nonalgorithmic Mind’, Behavioral and Brain Sciences, 13,

pp. 692–705.

goedel.tex; 2/04/2001; 11:44; p.13

14 Taner Edis

Penrose, R. (1994) Shadows of the Mind, Oxford, UK: Oxford University Press.
Stenger, V.J. (1995), The Unconscious Quantum, Buffalo, NY: Prometheus.
Thagard, P. (1988), Computational Philosophy of Science, Cambridge, MA: The

MIT Press.
Wang, H. (1987), Reflections on Kurt Gödel, Cambridge, MA: MIT Press.

goedel.tex; 2/04/2001; 11:44; p.14

