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Abstract. Subjective Bayesian inference is unsuitable as an ideal for learning
strategies to approximate, as the arbitrariness in prior probabilities makes claims
to Bayesian learning too easily vulnerable to inductive skepticism. An objective
Bayesian approach, which determines priors by maximizing information entropy,
runs into insurmountable difficulties in conditions where no definite background
theory is available. However, this lack of background knowledge makes the maxi-
mum entropy argument directly applicable to the process of drawing samples from
a population. As a result, evidence can be seen not just as eliminating a number
of incompatible hypotheses out of an infinity of possibilities, but as being repre-
sentative of the true state of affairs. Hence inductive skepticism can be avoided,
as demonstrated by a resolution of Goodman’s ‘grue’ paradox. This leads to a
clearer understanding of the vital role abductive processes and tools like simple
generalization play in learning.
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1. How can we learn?

If we have observed twenty black crows, are we then entitled to expect
other crows are also black? Such questions signal trouble; after all,
showing that the ways we generalize from experience are not arbi-
trary is a notoriously intractable problem. Scientists and engineers are
usually happy to assume we can learn, staying away from the eternal
philosophical handwringing over the possibility of knowledge.

However, methods of statistical inference have become basic equip-
ment in our sciences, and workers in fields like statistical physics or
machine learning often need to ask how reliable inference is best ac-
complished. If, for example, Bayesian reasoning is taken as an ideal
for methods of machine learning to approximate, the issue of choosing
priors will arise, and inductive skepticism lurks below the surface. From
a more philosophical point of view, if inductive skepticism means the
success of learning is a total mystery, this is a motivation to think a ma-
terialist view of mind breaks down.1 So a scientific approach to minds
requires some defusing of skepticism, even if a quest for a complete
justification of induction has an air of futility.
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Debates over cognitive relativism further highlight the problem. Sta-
tistical inference and conventional AI rely on an empiricist approach:
there is data, which is then fed into the machinery of method, in order
to support or undermine contending hypotheses. But the method or
‘inference engine’ is not uniquely determined; it appears others could
be chosen without logical contradiction. And this method cannot be
supported by its past success, as that would be arguing in a circle. It
stands as a groundless, foundational principle—which is a polite way
of saying it is completely arbitrary.

Of course, there are ways to avoid some of these pitfalls. For example,
we can take a coherentist view where nothing in our web of knowledge
serves as a foundation all else one-sidedly depends upon. Our methods,
in other words, are best seen as results rather than principles immune
to criticism. They can be supported by a detailed account of how we
learn, richly connected to theories concerning physics, cognition, and
the history of science. To avoid getting trapped in a highly coherent
fantasy, we also need reality checks. So we can try to achieve ‘correspon-
dence through coherence’ (Davidson, 1983; Prado, 1987); alternatively,
we might finally anchor our web upon ‘self-presenting properties’ at the
bottom of our observations (Chisholm, 1989).

These are rough themes; details depend on particular philosophers.
A crucial ingredient, however, appears to be an openness to novelty.
History need not rubber-stamp science, it may surprise us by finding
conceptual revolutions are best explained by social causes external
to scientific practice. An experiment might cast doubt on prevailing
theory. In this way, self-support of our style of learning avoids being a
vicious circle, looking more like a positive feedback loop (Giere, 1988).
Though we start with folk-theories which seem little more than prej-
udices, we can conduct genuinely independent investigations allowing
us to converge to stable results resistant to critical revision.

Such a picture suggests we can develop reliable methods which, while
not enjoying absolute certainty, are not completely arbitrary either.
To learn, we can depend on statistical methods, heuristic devices, and
abduction strategies including simple generalization (Leake, 1995). This
toolbox is subject to revision and improvement along with the knowl-
edge it underwrites. Most gratifyingly, we can replace the inference
engine of old-fashioned AI with a structure more reminiscent of the
interdependent networks of neuroscience.

For all its attractions, though, this picture of learning is still vulner-
able to inductive skepticism. Its advantage is that without the extra
complications brought on by keeping the three tiers of data, method,
and theory sharply separated, the source of our troubles is much clearer.
Learning depends critically on our being able to gain a foothold in un-
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derstanding new situations—where our background theories constrain
us the least; when we start to explore new territory by simple classi-
fication and generalization. And the claim of an inductive skeptic is
just that when we observe twenty black crows, that is the extent of our
knowledge, full stop. We can conclude nothing about the unobserved.
Hence knowledge can never gain a foothold, and so for all our sophisti-
cation, we still build castles in the sky. We might avoid vicious circles,
but without any purchase on new situations, we will still get nowhere.

2. Bayesian inference and Goodman’s paradox

2.1. A spatial version of Goodman’s paradox

To better appreciate the challenge and relevance of inductive skepti-
cism, we need to state the problem in more rigorous terms. A Bayesian
formulation is a good candidate to accomplish this. On the positive side,
arguments from betting behavior, requirements of consistent reasoning,
and other considerations converge on a Bayesian probability calculus
with impressive consistency (Howson and Urbach, 1993; Cox, 1961;
Snow, 1995). And it is easier to explore basic issues in probabilistic
reasoning with a Bayesian approach, rather than relying on the cum-
bersome devices of classical statistics. On the negative side, it seems
as many philosophers and statisticians find fatal flaws in a Bayesian
approach as those who think it is obviously correct (Mayo, 1996).
Prominent stumbling blocks Bayesians face are their association with
‘subjective probability’ notions and the difficulties in choosing prior
probabilities at the start of the process. However, these problems are
in fact closely related to the apparent arbitrariness which fuels induc-
tive skepticism. Hence both the strengths and weaknesses of Bayesian
inference make it ideal for discussing inductive skepticism.

To express inductive skepticism in a Bayesian idiom, we can use
Nelson Goodman’s well-known ‘grue’ paradox or ‘new problem of in-
duction’ (Goodman, 1983). Observing all emeralds have been green
leads us to expect they will remain so. But the same evidence also
supports the hypothesis that emeralds are grue, where ‘grue’ means
something is green up to the year, say, 2010, and blue afterwards. As
always with inductive skepticism, the problem comes with inferring the
unknown from the known: since our evidence does not discriminate be-
tween green and grue, our expectation that emeralds will remain green
cannot be based on evidence. It is not enough to invoke uniformity;
then the question becomes, uniformity of what, green or grue? The
sudden discontinuity at 2010 looks suspicious, but from the point of
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view of someone to whom ‘grue’ and ‘bleen’ comes naturally, ‘green’ is
a strange color which changes from grue to bleen at 2010.

Goodman’s paradox is still liable to seem rather contrived. A clearer
statement closer to realistic problems of inference can be obtained by
recasting the paradox in spatial terms rather than relying on future
discontinuities. After all, the heart of the paradox concerns inferring
the unknown, whether separated from us in space or in time.

Imagine an expedition to a planet in a distant galaxy. From their
spaceship, they send down an AI-endowed robot to make a visual survey
under the thick cloud cover. The robot soon notices some green boulder-
like objects which emit radio noise. The survey team dub these ‘norks’,
and observe a thousand large, green norks before calling it a day.

The team then maps radio signals from the whole planet and finds
about a million norks. They remark what a strange planet it is, covered
with green radio noise emitters. But Mission Control has included a
philosopher in the crew; she corrects the survey team, saying they
have not found that norks are green, only that norks in the area they
explored were green. Radio signals show norks on the other side of
a mountain range the robot never crossed. Those are wholly distinct
and separate; the survey learned nothing about them. One of the AI
programmers objects. After the first twenty or so norks, all which were
green, the robot generalized, adopting the hypothesis that all norks
were green. So did the crew in the spacecraft. And as other norks kept
turning up green, their confidence increased. After all, these norks could
have been blue instead. They were not.

The philosopher agrees. Call the hypothesis ‘all norks are green’ g,
and the evidence of a thousand green norks e. The survey starts out
with a prior probability for g, which is P (g). As green norks accumulate,
the probability that norks are green increases. In Bayesian terms, the
calculation is straightforward:

P (g|e) =
P (g)P (e|g)∑
j P (e|hj)P (hj)

(1)

where the hj are all the (mutually exclusive) hypotheses about nork
color distribution under consideration. The posterior probability of g
is P (g|e) = kP (g); and since P (e|g) = 1,

k =
1∑

j P (e|hj)P (hj)
> 1 (2)

So P (g|e) > P (g). Since the probability of g grows with confirming
evidence, it appears that simple generalization does, in fact, set us on
the path to learning.
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Unfortunately, the philosopher now points out, this is an illusion.
P (g|e) > P (g) only because e eliminates certain rival hypotheses such
as b, ‘all norks are blue’. Others survive. Consider the spatial version of
the grue hypothesis: g̃, standing for ‘norks on the explored side of the
mountains are all green, and those on the other side are all blue’. The
evidence e does not discriminate between g and g̃; in fact, it confirms
both to the same degree: P (g̃|e) = kP (g̃). The posterior probability
of g may have increased, but what knowledge the survey appears to
have gained about the color of unobserved norks derives entirely from
the initial probabilities prior to any evidence. Assume, for the sake of
illustration, that the only hypotheses under serious consideration were
g, g̃, b, and b̃. Observing e eliminates b and b̃, which may, in fact, result
in the survey judging it more likely that norks on the other side are
green rather than blue. But this will happen only if P (g) > P (g̃). These
probabilities were set before any experience of norks.

Normally, the philosopher continues, our background knowledge sets
the prior probabilities. We might, for example, know that an animal
species usually has common traits like color, so someone observing only
black crows would conclude most crows are black. If norks were just
a newly discovered animal, we could say P (g) > P (g̃). Unfortunately,
norks are located on a strange planet in a far galaxy, and are dissimilar
to anything previously encountered. They are as close to being ‘entirely
new and strange’ as one could want, and so our background knowledge
is of little use. The normal pattern for norks may well be to have
different colors on either side of a mountain range; no one knows. Of
course, hypotheses like g come to us more naturally than g̃, but that
says more about us than about norks.

The AI programmer asks whether even though norks are almost
wholly new and strange, we still know enough to expect nature is
usually uniform. In that case, g would have a prior edge over g̃. The
philosopher, however, points out that this would merely postpone the
question of selecting priors under completely novel circumstances. If
our bias towards uniformity is itself a product of learning, this im-
plies a previous state of even less knowledge. If not, it is an arbitrary
foundational principle.

Now thoroughly confused, the survey team sends the robot down
to the other side of the mountains, and find nothing but green norks.
But this does not quiet their worries. There are many more areas they
have not explored, and their philosopher can make a similar argument
about the unseen norks in any of these areas.
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2.2. Implications for subjective Bayesianism

This story is full of morals for Bayesian inference. First of all, subjective
Bayesianism, which is perhaps the most popular Bayesian philosophy,
fails to sustain learning in novel conditions. Leaving the choice of priors
arbitrary is not good enough.

There is, of course, much that is plausible about subjective Bayesian-
ism (Howson and Urbach, 1993). Individual statisticians bring differing
backgrounds and hence different expectations to a problem, which can-
not be ignored. And equation (1) ensures prior probability distributions
which are not wildly different will quickly converge on near-identical
posterior probabilities with accumulating evidence. In most practical
applications, where statisticians start with roughly similar prior expec-
tations, subjective Bayesianism will do fine. Even starting from very
different priors, provided they have no zeros, Bayesians will converge
in the long run.

There are also well-known difficulties with subjective Bayesianism
(Kyburg, 1983; Mayo, 1996). The ‘long run’ can be indefinitely long,
so there can always be Bayesians with different enough starting points
to disagree after any amount of evidence. Let c stand for a hypothesis
that is absurd in light of the evidence from modern science, s, so that
P (s|c) = δ � 1. A proponent of c might, however, come from a cultural
background where c is considered almost certain, so he starts with
P (c) = 1 − ε, where ε � δ � 1. In that case, P (c|s) ≈ 1 − ε/δ ≈ 1.
Such scenarios are not entirely unrealistic, since the scientific commu-
nity does clash with communities with radically different conceptions
of the world. In the United States, for example, c could represent
the religiously-inspired creationist claim that biological evolution did
not occur and that Earth is only a few thousand years old. Creation-
ists, who are a major nuisance for US science education, are also not
averse to accusing scientists of illegitimately assuming nature is uniform
(Edis, 1997). Subjective Bayesianism, with its arbitrary priors, appears
incapable of ruling out even ideas as absurd as creationism.

Goodman’s paradox amplifies the subjective Bayesian problems with
priors. In the original paradox, no evidence gathered before 2010 dis-
tinguishes between green and grue, so there is no possibility of progress
and eventual convergence. In the spatial version, no amount of obser-
vation on one side of the mountains tells the survey team about norks
on the other side. Everything depends on the priors; and subjective
Bayesians make no rational distinction between an AI programmer
setting P (g) > P (g̃) and a skeptical philosopher preferring symmetry
and hence P (g) = P (g̃). Subjective Bayesianism falls into such impasses

goodman.tex; 21/07/2000; 14:11; p.6



Resolving Goodman’s Paradox: How to Defuse Inductive Skepticism 7

too easily; it cannot be the centerpiece of either an account of genuine
learning or of a philosophy of science.

2.3. Does objective Bayesianism do better?

Since arbitrary priors invite inductive skepticism, perhaps the solution
is to supplement equation (1) with a principle for determining priors
in novel situations. Attempting to remove the taint of subjectivity
from Bayesian inference, objective Bayesian approaches take this path.
There are a number of equivalent ways to formulate a principle for
determining uninformative priors, focusing on marginal distributions,
right-invariant Haar measures and so forth (Berger, 1985). The most
appropriate in the context of Goodman’s paradox is the maximum
entropy formalism championed by E.T. Jaynes. We want to determine
the starting probabilities prior to all experience. This suggests looking
for a prior which reflects the fact that we are maximally ignorant,
possessing no empirical information. We should assume the least about
the unknown. But in that case, we can use information entropy as a
measure of missing information. We maximize the entropy

H = −
∑
j

P (hj) logP (hj) (3)

subject to constraints if some knowledge about the problem is available.
When hypotheses are parametrized by continuous variables, the sum
becomes an appropriate integral (Jaynes, 1968).

This is an attractive picture. In the spirit of pure Bayesianism, em-
pirical data come into play only through equation (1), while the initial
prior is objectively determined by maximizing ignorance. Of course,
this prior is often practically impossible to compute for real-world
statistical problems. This limits the range of application of maximum
entropy methods, though it is invaluable in certain statistical mechanics
problems (e.g. Edis, 1993) and as a technique for signal analysis and
image reconstruction (Wu, 1997; Erickson et.al., 1998). Even so, it is
clear that maximizing H favors broad distributions. When one of the
P (hj) is much larger than the others, H is lowered; after all, narrowing
the possibilities in this way implies increased knowledge about the state
of a system. Therefore, even when an uninformative prior cannot be
exactly calculated, we can rule out absurdly narrow priors such as
P (c) = 1 − ε in the creationism example. Objective Bayesianism, in
other words, promises to avoid the problems generated by arbitrary
priors, even if in practice it would serve mainly as a way to prevent
wildly different starting points for a more subjective style of Bayesian
inference.
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Unfortunately, objective Bayesianism fails to get around Goodman’s
paradox. Consider, once again, the problem faced by the survey team
who have just encountered norks. The natural set of hypotheses to
consider are those which state the color of every nork on the planet,
such as g, b, g̃ and so forth. Since the norks are entirely unfamiliar, H
has to be maximized without any constraints. This results in a uniform
distribution: ∀i, j P (hi) = P (hj). In particular, P (g) = P (g̃). Objective
Bayesianism would seem to suggest the survey team can learn nothing
about unobserved norks from the ones they have already seen.

In fact, the problem runs deeper. The above treatment of the hj gives
each color distribution equal weight. An alternative might be to assume
the norks were drawn from a larger population in such a manner that
each nork has a probability θ of being green and 1− θ of being blue. In
that case, our hypotheses would be parametrized by θ, and we would
need to maximize the entropy of P (θ). Jaynes (1968) finds that the
prior is the irregular distribution P (θ) ∝ [θ(1− θ)]−1. This gives more
weight to more uniform color distributions, resulting in P (g) > P (g̃).

In other words, contrary to Jaynes, maximizing entropy does not
produce a distribution reflecting complete ignorance. The procedure
relies on the availability of a background theory which specifies the
appropriate statistical model. It is only in this context that we can
speak of uninformative distributions for the model parameters and
thereby unambiguously assign initial probabilities to hypotheses. This
is why maximizing entropy can work in statistical physics or image
reconstruction; in statistical physics, for example, the density of states
is determined by quantum mechanics, leaving no room for uncertainty
about the weight for each configuration. The problem with the norks
involves not only a lack of knowledge of their precise color distribution,
but also a lack of a background theory which could fix the prior. All ob-
jective Bayesianism does here is state more rigorously how background
knowledge is to be reflected in the prior; the problems the philosopher
posed for the survey team still remain.

It might seem that an objective Bayesian might just need to take
one step backward to solve this problem. After all, background theories
themselves can be assigned probabilities, so we might try to maximize
−
∑
P (T ) logP (T ) over all possible theories T in order to account for

an uncertainty of background. But now, even if we could conceive of
a way to approximate this quantity, the question becomes what could
serve as a theory of all theories which will assign weights to the T ’s. It
is tempting to think simplicity might be the key, following Ockham’s
Razor and the common intuition that simpler theories are more likely to
be true. However, it is severely doubtful that the requisite experience-
independent measure of simplicity could be found, especially given
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the idea’s vulnerability to skeptical arguments at this point (Sober,
1994). This would also be a curiously Platonic turn for a philosophy of
inductive inference, since most of what is interesting about the world
becomes inherent in the logically predetermined priors, reducing the
function of empirical observation to eliminating some possibilities.2

So it appears objective Bayesianism cannot get around inductive
skepticism either. In fact, no pure form of Bayesianism can, since the
root of the problem is not with any particular method of assigning
priors but with the whole notion of setting priors independent of all
experience. We must go beyond pure Bayesian approaches to account
for learning in truly novel circumstances.

3. Representative sampling and generalization

3.1. Back to basics

Assigning probabilities to an open-ended set of hypotheses is not safe.
So perhaps other interpretations of probability, particularly the fre-
quentist, will offer clues about how to proceed. While classical statisti-
cal inference is just as vulnerable to inductive skepticism, frequencies
often provide a more intuitively plausible conception of probability.

In that case, let us go back to basics. Consider a bag containing
one white and one black ball, from which we blindly select one. Few
would quarrel with a statement that there is a 1

2 probability of picking
either ball. A frequentist can observe that in the long run, the relative
frequency of white balls in a series of trials will approach 1

2 . Someone
who thinks of probabilities as propensities could agree that the physical
situation is such that someone will pick either ball one half the time.
And an entropy-maximizing Bayesian will assign equal probability to
white and black since we possess no information prompting us to favor
one over the other.

Among the various options, however, the epistemic probability which
Bayesians use is the most resilient in the face of skeptical objections. To
begin with, propensities depend on the background theory. It is easy to
imagine that, for example, the white ball might have a more pleasing
texture, so that it will be selected more often. We could make sure
conditions are completely symmetric except for color, controlling all the
relevant factors we know of. But even then, perhaps the person picking
the ball has an occult affinity towards white, so that unbeknownst to
all, it is a virtual certainty that they will select the white ball. Though
an absurd possibility, this emphasizes how judgments of propensity
make no sense outside of a fairly solid background theory. Propensity
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notions, however useful in context, will not help us understand learning
in entirely novel conditions.

A frequentist view has a similar problem. The white ball is one out
of a population of two; this notion of a relative frequency is straightfor-
ward. But frequentism, to the extent that it treats single-event prob-
abilities as meaningful at all, ties them to frequencies in an idealized
infinite series of trials. The long run frequency will approach 1

2 if the
balls are drawn at random; in other words, if the trials produce a ran-
dom series. Normally, we could infer that a series is most likely random
if we have a reliable background theory to that effect, or if we can
generalize from observing an algorithmically random finite series. This,
of course, invites skeptical objections. Frequentism implicitly assumes
either background knowledge or that we can extrapolate; it does not
get around inductive skepticism.

If, however, probabilities express degrees of belief, they need not
assume knowledge about the ball selection process. We draw one ball
out of a population of two, where we are completely ignorant about
any biases in the physical selection. Unlike the example of the norks,
there is no ambiguity concerning the population we sample, hence max-
imizing the entropy directly gives the single-event probability. Another
way to see this is to notice that maximizing the entropy when setting
probabilities for the balls concerns our ignorance. We cannot rule out
an occult affinity for white, but we do not know about an affinity for
black either. The symmetry between white and black is entirely due to
our ignorance, not any known or assumed properties of the selection
process.

The balls-in-bag example, though trivial, highlights how probability
judgments are on solid ground when they refer to sampling definite
populations. Both Bayesian and frequentist interpretations of probabil-
ity run into difficulties when extending this basic, so-called ‘classical’
notion of probability—Bayesians to ill-defined populations correspond-
ing to hypothesis sets, and frequentists to idealized infinite series. This
suggests that to understand learning about norks, we should focus on
real populations and the process of drawing a sample.

In the nork problem, the expedition has surveyed a thousand out
of a million norks. As any pollster knows, almost all samples of this
size are representative of the population; a randomly selected sample is
very likely to reflect the characteristics of the whole. This is, of course,
a much-used principle of statistical reasoning, and it also has previously
been argued to help demonstrate the rationality of induction (Stove,
1986).3 So observing that the sample the expedition took is likely to
be representative is a vital step towards resolving Goodman’s paradox.
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That almost all samples of a thousand out of a million are representa-
tive is easy to illustrate. Using the standard hypergeometric probability
distribution for sampling without replacement, we can calculate that if
exactly half the total population were green, approximately 99.86% of
samples of a thousand will show between 450 and 550 green norks. The
likelihood that the sampled frequency is within ±0.05 of the frequency
in the general population is even larger if the proportion of green norks
is less than or larger than one half.

Such frequencies of adequately representative samples can straight-
forwardly be related to our basic balls-in-bag probability. Since the
expedition was completely ignorant of the colors of norks, and thus
also of any bias in their sampling process, the simple maximum-entropy
argument applies: they must assign equal probability to all the possible
thousand-nork subsets. It is as if they had all thousand-nork combina-
tions out of a million in a bag, and picked one arbitrarily. Therefore
the sample they obtained is likely to be representative of the color
distribution of the whole population. So the robot should, in fact,
generalize so as to expect that all norks are green, rather than that
they change to blue on the other side of the mountains.

To clarify this reasoning, it will help to note the differences between
learning about the norks and the more familiar type of statistical sam-
pling problem. The symmetry between samples of norks is entirely due
to initial ignorance. Nothing about the total nork population need be
assumed; not that their colors are independent, nor that their colors
are randomly distributed so that nothing but the overall frequencies
of colors usefully describes the population. Though formally similar,
learning about norks is not the same as, for example, estimating the
proportion of defective widgets given a random sample from a produc-
tion run, where a definite statistical model is assumed and a single
parameter is estimated.

This ignorance means the expedition cannot rely on the procedures
statisticians use to ensure a sample is representative. In particular,
randomization makes no difference. Discussions of statistical inference
often conflate two different senses of randomness. The first is that of
patternlessness, the way a series obtained through flipping a fair coin
has no infinite subset predictable by any algorithm (Chaitin, 1987).
Another common use of “random” refers to the arbitrariness of the
sampling process, so that each subset of the whole population was
equally likely to be chosen. Indeed, using a table of random numbers is
an excellent way to achieve this arbitrariness. However, in the case of
the norks, these two senses need to be distinguished. Ignorance, or the
fact that norks are entirely new and strange, is sufficient to ensure the
sample is arbitrary. It is, of course, possible that the sample is biased—
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that the robot happened to land in an unrepresentative pocket of green
norks. And one reason why Goodman’s paradox has such force is that
the sample is clearly not random in the sense of being patternless,
because it is restricted to one side of the mountains. It seems plau-
sible that nork colors might in fact have a pattern of dependence on
mountain ranges; it would have been much safer to randomly choose
the norks and get a sample from much more widely scattered locations.
But if the nork example is to stand for a completely novel situation,
we cannot rely on on this bit of background knowledge either. Any
sample is equally likely to hit an unrepresentative pocket; the robot’s
clustered observation and a randomly generated sample are no different
in this regard. The same applies to the original, temporal version of
Goodman’s paradox. If we know nothing about the time dependence of
emeralds, the fact that our sample is confined to the past is irrelevant:
it is as likely to be representative as a case where we could gather a
sample which was better scattered throughout spacetime.

Another aspect of the difference between the nork problem and
sampling widgets is also worth noting. Obtaining information from a
sample immediately brings up the question of quantifying the strength
of support for the robot’s generalization, and leads straight into the
thicket of debate pitting classical confidence intervals for parameter
estimates against their Bayesian analogues. Our minimalist version of
probability will not help resolve such matters. And since the expedition
has no prior knowledge that the overall frequency of nork colors is the
only useful descriptive variable, it is more appropriate to conceive of
the robot’s task in broader terms. As it examines the norks, the robot
must be ready to generalize from other patterns and explore causal
links which will bind knowledge about norks more securely into an
overall web of knowledge. Obtaining an increasingly accurate estimate
of any single parameter describing the nork population is too limited
a task; instead, its learning must remain part of task of building a
more complex theoretical understanding. Generalization from a likely
representative sample, however well-justified, is still but a first step in
this process. Hence attaching a precise number to its confidence in the
generalization would be more misleading than helpful.

3.2. Breaking the symmetry

At this point, we might wonder if the argument from representative
sampling cheats somewhere. It seems not to do justice to the com-
pelling symmetry in Goodman’s paradox, where it seems like whatever
justification for a generalization to g we come up with can be stated
equally well in terms of g̃.
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Consider the following objection the expedition’s philosopher might
advance. During its exploration, the robot made a list with entries
like “the n’th nork seen was G,” with G for green, B for blue and so
forth. But, the philosopher says, the robot could just as well have been
programmed to follow a different labeling scheme which replaced G
with G̃ for “green on this side of the mountains, blue on the other
side,” and B with B̃. Though eccentric, this would be a perfectly
equivalent way of recording the same information. But then, if such
a differently programmed robot had observed the same group of norks
as the original, it should have generalized to g̃. After all, prior ignorance
of nork colors goes for the G̃ and B̃ labels as well, so the sample taken
is most likely representative. Since the frequency of G̃’s in the sample
is almost certainly close to that in the overall population, the robot
can confidently pick g̃ over g.

This objection, however, is flawed. Imagine that the philosopher had
instead declared she had some peculiar but certain knowledge about
norks: that green norks on the explored side of the mountain have
a small hole on top, but that blue norks, if any, lack this hole. On
the other side, however, only blue norks have the hole and not the
green. The expedition now sends the robot down to the same side of
the mountains it previously explored, confirming that the norks are
green, and that, looking closer, they have small holes on top. Yet if
the philosopher’s knowledge was accepted as certain, it is clear that
this new trip to the surface did not acquire any new information. In
particular, she cannot claim that since all norks observed have had
holes on top, the robot should generalize to expect norks all have holes,
which means they are blue on the other side of the mountains. As far
as the holes are concerned, the second sample from the same side is
completely biased and wholly uninformative. The correct inference is
still the generalization from the first, arbitrary sample. Introducing the
strange information about holes after the fact changes nothing.

The switch between G and G̃ is exactly parallel, since the ‘new’ char-
acter G̃ is linked to G and the mountains by definition, and thus with
certainty. And again, it makes no difference. After any given sample S
is taken, the philosopher can always identify a G′ such that G′ and G
coincide for an S′ ⊃ S but diverge for the rest of the population, and
claim that a different generalization based on G′ is justified. But then
she can no longer claim S was arbitrary. Another way of expressing this
asymmetry is to notice the entropy-maximizing probability distribution
expressing ignorance about the G-properties of the population is not
identical to that for complete ignorance about properties labeled by
G′. The change from G to G̃ was not a neutral relabeling; it assumed
information which was not available.
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3.3. Evil Demons

This goes a long way to resolving Goodman’s paradox, but not yet
the full distance. The symmetry between g and g̃ is broken, after all,
for what amounts to historical reasons. Though after-the-fact changes
do not matter, it appears justified generalization depends critically
on knowing beforehand that G and B were appropriate for describing
objects rather than G̃ and B̃. At the least, there is a sense in which our
prior ignorance about new and strange objects like norks is not quite
complete. For us, G corresponds directly to how we perceive objects,
and we legitimately express our ignorance in these terms. But this
dependence on how our minds work is disturbing; if an alien mind to
whom G̃ came naturally had observed the same sample of norks, would
it have been justified to generalize to g̃?

This question does not directly challenge the inference that norks are
probably green. For example, the expedition could construct something
like this alien mind by inserting a small box into the circuit connecting
the robot’s camera with its CPU. Inspired by thought experiments
about inverted qualia, this box would convert green signals from the
camera into blue and vice versa, but it would be activated on only
one side of the mountains and not the other. Now, the robot would
expect to continue to see green norks; translated into the expedition’s
terms, this means generalizing from G̃ observations to g̃. But this does
not restore the symmetry between g and g̃. It is clear the robot’s very
hardware deceives it about norks; the inverting box was designed with
prior knowledge of the normal process of taking samples, just to make
it biased. However, what if the expedition lacked this knowledge? The
survey team knows a lot about observation. Engineers can easily find
the inverting box, and neuroscientists can certify that the human op-
tical nerve has no such impediment. But if not handed down from
heaven, this knowledge must itself have been learned somehow. So
we must ask where we would stand if we were truly facing entirely
new circumstances. In that case, we would be in the same boat as the
robot; all we have to go on are our perceptions and not direct access
to reality, so it becomes a serious question whether we, like the robot,
are systematically misled by our perceptual wiring.

This is reminiscent of the species of skepticism which wonders if our
senses are deceived by an Evil Demon. Indeed, Goodman’s paradox
can be viewed as an ingenious combination of Humean and Cartesian
skepticism. This brings up a host of traditional philosophical issues
concerning Evil Demons and how language represents reality, as well
as new questions concerning the ways we classify observations recently
raised by philosophers (Hirsch, 1993). Though it is impossible to ad-
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dress many of these here, the notion of evidence being representative
points a way out of this version of skepticism as well.

We can begin with a standard coherentist response to Evil Demon
scenarios. A believer in a Demon would be so comprehensively para-
noid, she would have no hope of giving reason even for her paranoia.
In contrast, trust in our cognitive abilities is a self-supporting belief
(Lehrer, 1990). We can take it as a starting point for constructing
theories and see what happens—including, possibly, revising our views
so as to converge on paranoia.

This is correct. Trial-and-error is the only way to begin writing on
a blank slate; in building a robot which does not know even the ways
to classify and label objects, all we can do is start with some arbi-
trary perceptual equipment and test it. We need, however, to put some
backbone into this argument, especially into the notion of support.

Consider, first, learning when we do have something to build upon.
Generalizing about norks did not rely on prior knowledge about the
nork population to fix the appropriate statistical model. So not only is
there a possibility of failure as in any statistical inference, but we must
be responsive to systematic failures which inform about the nature
of the nork population. Imagine that norks were in fact blue on the
other side of the mountain, and that the expedition discovers this by a
comprehensive investigation. Then they visit a string of planets studded
with norks, and all exhibit a pattern of blue and green on either side of
mountain ranges. In that case, the survey team could not expect nork
colors to be uniform on the next planet. They can now also generalize
at the level of the population of nork-bearing planets, expecting a two-
color pattern. In other words, the expedition is no longer ignorant about
norks, and so looking only at one side of any mountains can no longer
be considered arbitrary sampling.

Now imagine that even on earth, practically every green population
turned blue over barriers. Trees switch between blue and green on cross-
ing a river; the neighbor’s lawn looks blue beyond the fence; the same
spectral lines look blue or green depending on the star the light comes
from. In such a world, the higher level generalization would be very
broad indeed, and in fact, newly encountered norks would themselves
be expected to conform to this pattern. All our color-regarding behavior
will be influenced by this deep and persistent pattern; it will become
second nature to us so much that a forest which did not change color on
different sides of a river would strike us as a strange anomaly. Observing
a cluster of green objects, we would generalize to expect they will be
blue beyond any mountains. In effect, we will have learned G̃ and B̃
are the correct ways to describe objects, since this produces successful
generalizations.
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Let us now apply this rough sketch of learning to a blank slate of a
robot, which starts out with less smarts than an exceptionally stupid
bacterium. It would be more appropriate to conceive of its learning in
more pre-theoretical, hardware terms. Its first task, after all, is to get
its perceptions lined up with reality so that it can generalize in matters
important to it. So we should think of a population of self-replicating
robots, with very basic but varyingly wired perceptual systems. Their
reproduction depends on correct inferences; they might, for example,
thrive among plants and die in water, and have only visual information
to help them infer which area is which. So it is vital they perceive colors
in a way which will successfully generalize. In a world where objects
keep switching between our blue and green, it would be most efficient
if the robots directly see the world in G̃ and B̃ terms, rather than
compensate with a layer of software-style learning.

There is no need to belabor the point; it is abundantly clear a process
like Darwinian evolution can produce well-adapted, cognitively sophis-
ticated creatures who successfully generalize and exploit regularities in
their local environments. The question is, of course, whether any of
this matters; it looks too much like the classic mistake of circularly
justifying induction by its sparkling record of past success.

The difference is in a matter of degree. To the inductive skeptic,
the unknown is unknown, period; the efforts at generalization of a
super-stupid robot and a sophisticated survey team are much the same.
However, if evidence is representative rather than only something which
eliminates incompatible hypotheses, the generalizations available to a
robot close to a blank slate are much weaker that those of one which has
adapted to a complex local environment. The blank-slate robot almost
certainly will start with a string of failures, adapting very crudely
at first. It is trying to extrapolate from a very small sample of its
environment, and so this will be unreliable. The survey team and the
well-adapted robot do much better. They construct many interlocking
layers of generalization, including inferences based on the frequency of
success which would be expected from correct perception of regularities;
they draw on multiple independent lines of evidence that they have an
accurate picture of their local environment. They not only have a much
larger sample but multiple convergent ways of extrapolating from it.

This amounts to a search for coherence; not as a vague hanging-
together but as a means of reality-testing. A well-adapted robot will
achieve a cognitive picture tuned for successful local inference. So for
such a robot, or the survey team, norks are not as much an unknown
as for a robot close to a blank slate. They can study norks with less
of an expectation of basic readjustments of perception and with more
confidence that they can classify and generalize properly.
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Of course, all this is still based on learning about our local pocket
of space and time; the inductive skeptic can still ask why things should
behave similarly elsewhere. Perhaps norks really are blue on the other
side. Perhaps an Evil Demon will turn the sky green and the grass blue
tomorrow, just to play a bad joke on us. Or maybe emeralds will turn
blue at 2010, because they were grue all along. But we can legitimately
expect otherwise. The ignorance of the survey team meant they should
treat their sample of norks as representative. Similarly, in the absence of
information to the contrary, our well-explored local pocket of spacetime
can be taken as representative. This is no guarantee; the survey team
should be surprised if the norks are blue over the mountains, but not
amazed. Nevertheless, norks are not a complete unknown for them.
And we can legitimately ignore the Evil Demon and grue emeralds as
serious probabilities.

4. How we learn

Normative accounts of learning are often closely connected to the phi-
losophy of science. After all, science is our best example of nontrivial
learning; not only because it is compelling in its depth and detail,
but because it has on occasion radically revised certain of our com-
monsense generalizations about the world. So questions of learning are
often posed in a context of trying to understand science, and inductive
skepticism surfaces in problems like the underdetermination of theories
by evidence.

For many, the key issue has been to find a method or principle
to sort out the best theory in play, given the evidence. But attempts
rooted in ideas like positivism, logical probability, or falsificationism,
have always come up short. And though such accounts should have
been normative for low-level machine learning as well as the cognitive
heights of modern science, no AI programmer could send a robot out
into the world equipped only with falsificationist principles.

Still, since the alternative seems to be a dismal pragmatism which
reduces science to a ‘way of coping’ when not flirting with outright
cognitive relativism, the need for basic principles remains strong. In
the past few decades, many philosophers have looked to statistics to
underwrite science. After all, statistics is all about rigorous reasoning
under conditions of uncertainty and incomplete information, and has
a large and intimidating mathematical literature. Its techniques are in
widespread use in the sciences. Best of all, its norms can be applied
practically. Bayesian statistics, especially in a decision theoretic con-
text, seems a candidate ‘gold standard’ for machine representations of

goodman.tex; 21/07/2000; 14:11; p.17



18 Taner Edis

uncertainty; psychologists can study everyday human reasoning and
even animals to see how well we follow the rules of statistical inference
(e.g. Cosmides and Tooby, 1996; Brase et al., 1998).

However, even here it is all too easy to find openings for inductive
skepticism. Statistical inference is a deductive procedure to draw con-
clusions from data and a given statistical model; it is no use outside
an overall iterative approach involving inductive steps to decide upon
appropriate models (Leonard, 1980; Leonard and Hsu, 1999). The in-
ductive element depends on the expert judgment of the statistician;
it is not captured by the mathematical apparatus. Though there is
much debate within and between various schools of statistics on this
issue, none provide an adequate account of model formation, and all
are vulnerable to the problems illustrated by Goodman’s paradox.

Therefore, inductive skepticism must be defused at the level of rudi-
mentary machine learning rather than that of statistical methods. At
first, this does not look promising. Even in representing uncertainty,
AI departs from ideals such as the Bayesian picture, treating it as
one among many tools thrown together for practical reasons (Krause
and Clark, 1993). And examining human reasoning as well as ideas
about artificial analogues, we encounter the literature on abduction
and hypothesis-making. On one hand, abduction is often considered
a source of creative insight, which must involve random generation
of novel approaches (Edis, 1998). It also, however, incorporates basic
attempts at inference, making connections and extrapolations through
analogy and generalization. This aspect of abduction is subject to crit-
icism and justification (Burton, 1999). In short, ‘abduction’ is a vague
concept, describing a motley collection of tools which might seem to
need justification in terms of approximating a more rigorous principle
of learning.

Nevertheless, much in basic abductive reasoning naturally combines
inference and model-making. We form hypotheses because we think
they are likely. In fact, we never consider the vast majority of possibili-
ties compatible with the data, ruling out almost all competitors to our
hypotheses from the start. This is done largely through classification
and generalization, in which the common theme is pattern recognition.
Finding patterns and extrapolating from them comes to play both in
drawing conclusions in novel circumstances and in introducing new
levels of generalization for more complex models. Understanding why
this works, then, should take the sting out of inductive skepticism,
turning it into a challenge to spur learning about learning rather than
an objection which threatens to derail the whole enterprise.

The key is to realize evidence is representative rather than purely
eliminative. Borrowing ideas of sampling and maximizing ignorance
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from statistics, we can justify this statement. As a result, we do expect
uniformity and simplicity in nature, but not because this is a prior
assumption or a metaphysical requirement of Reason. This could not
work as a fundamental principle anyway, as the symmetry between G
and G̃ in Goodman’s paradox makes clear: uniformity of what? Our
notions of simplicity are not logically predetermined; they take shape
in adapting to our environment, and we expect this to continue to
succeed on grounds of representativity. And representativity derives
from nothing but an accurate description of our ignorance.

None of this diminishes the usefulness of statistics. It does, however,
suggest a change of emphasis. Alongside using statistical norms to
guide work on machine learning, we should also open statistics to the
influence of ideas concerning machine learning and abduction. Statistics
cannot generate all-encompassing norms of learning; we should instead
conceive of it as occupying a middle ground between broad analyses of
science and investigations of more basic elements of learning. Tools like
generalization are not just primitive echoes of statistics; they set the
stage for statistical inference.

In that case, the task that beckons is to forge closer connections be-
tween various ways of thinking about learning. Bayesians, for example,
might take their perennial problem with priors as an opportunity to try
and set priors to better reflect available instruments of learning, par-
ticularly sampling. One possible way departs from ‘empirical Bayesian’
approaches which deal with hierarchical models, using existing data to
revise priors (Berger, 1985; Schervish, 1995). Such methods are also
useful in interpreting Bayesian probabilities in a more frequentist fash-
ion (Efron, 1996). Another direction to explore is amending Bayesian
inference to accommodate imprecise probabilities (Walley, 1991), since
precise distributions on parameter values are inappropriate when ex-
ploring novel situations and the statistical model is not fixed. There is
much research to be performed here, both from a statistical and an AI
perspective.

Another benefit of progress on this front would be a more unified
view. Theories of science and learning based on probabilistic reasoning
have hitherto been disconnected from accounts which emphasize coher-
ence, whether they happen to be inspired by epistemological reflection
or by the properties of neural networks. Integrating statistics with
the perspective of abduction and model building would introduce a
coherentist element, since this appears to be vital to understanding
how generalization works.

Meanwhile, we might at least put some of the more extreme forms
of skepticism behind us. We expect grass will remain green tomorrow,
and there is more to this confidence than an act of animal faith.

goodman.tex; 21/07/2000; 14:11; p.19



20 Taner Edis

Notes

1 Hume and Kant, though in different ways, suggested induction was rational by
virtue of the way our minds work. Many philosophers have been attracted to rooting
epistemology in psychology or the norms of a culture ever since. However, this is
not satisfactory unless there is something magical about our minds so that they
participate in some kind of transcendent validation of induction. Hence the appeal
of arguments such as Grayling (1985), which proposes a version of idealism.

2 Regardless of whether a Bayesian approach is adopted, Goodman’s paradox can-
not be resolved by conceiving of induction in terms of elimination rather than enu-
meration and generalization as does Papineau (1993). That eliminating alternatives
is not sufficient is precisely what Goodman’s paradox makes clear.

3 While Stove (1986) does emphasize the key role of representative sampling, he
also misdescribes the inductive skeptical claim as P (h|e) = P (h) for all e and h
(p. 40), not excluding cases where e ` ¬h. He also burdens his overall argument
with a logical probability framework, and does not adequately address Goodman’s
paradox.
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