Assignment 5; Phys 185

\qquad

1. (30 points) A ball with mass m, starting at rest, is dropped from a height of h_{i} and bounces on a hard floor. The force on the ball from the floor is shown in the figure. Find the height h_{f} to which the ball rebounds. τ is an amount of time.

2. (30 points) You do a collision experiment with carts in the lab, but this time you work with expensive equipment that reduces friction with the track to a negligible level. You also work with carts that incorporate a spring that can be compressed and released during a collision, imparting the energy stored in the spring to the carts rebounding from the collision.

You set up the collision with a cart with mass $2 m$ with initial velocity $v_{2 i}=v$ heading toward a cart with mass m that starts at rest. You measure the final velocity of the cart with mass m in three different experiments, obtaining $v_{1 f}=v, v_{1 f}=\frac{4}{3} v$, and $v_{1 f}=$ $2 v$. Analyze these three experiments and determine which experiments must have had a compressed spring released during the collision.
3. (40 points) Remember how we got the gravitational potential energy mgh: the applied force acting against gravity had a magnitude of $m g$, and we found the area under the force-versus-distance curve, a rectangle of height $m g$ and base h.

Now we want to generalize this to beyond locations close to the Earth's surface. Take the gravitational force magnitude F_{G} between two point masses m_{1} and m_{2} separated by a distance r. We will again look at the area under the force-distance curve.
(a) Sketch a graph of F_{G} versus r.

Now, according to your sketch, do you do more work in changing r from R to $1.1 R$, from $2 R$ to $2.1 R$, or from $3 R$ to $3.1 R$?
(b) The convention for gravitational potential energy is to say that it is zero when the masses are infinitely far from each other. So the expression for U_{G} must become very small as r becomes large. Given this, and the behavior you found in part (a), which of the following is the correct general equation for U_{G} ? (Only one of the options given is consistent with what you found about U_{G}.)
(i) $U_{G}=\frac{1}{2} G r^{2}$
(ii) $U_{G}=m_{1} m_{2} r$
(iii) $U_{G}=\frac{m_{1}}{m_{2}} e^{-G r}$
(iv) $U_{G}=-\ln G r$
(v) $U_{G}=-G m_{1} m_{2} / r$

Show your work checking consistency:
(c) Given your U_{G}, find the escape speed of an object launched away from Earth. This is the minimum speed necessary to never fall back to Earth under the influence of gravity: You start from r equal to the radius of Earth and speed equal to your escape speed, and end up at r equal to infinity and the object at rest. You can look up data about the Earth to find a numerical result.
(d) Find an equation for the radius r_{s} for the event horizon of a black hole with mass m. The event horizon marks the point beyond which nothing can return, since it would have to travel faster than light. You find r_{s} by setting the escape speed equal to the speed of light c.

