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Setup

Connect two light gates in “daisy chain” (back to back) mode, and hook them
up to the Green Vernier device. (Consult the example setup I’ll have in the
lab.) Then open Logger Pro. You will see four windows: a data table, and
graphs for position, velocity, and acceleration. We will use only the timing
column on the table. Disregard all the rest.

Play with the gates. Blocking the path of light between its ends will
switch the state of the gate (0 or 1). By looking at the timing column, you
can figure out the time elapsed, ∆t, between when a cart passes through one
gate and then the other. You will need to mount something like a card on
top of your carts, using tape, to make it block the light gates as it goes by.

Make sure you understand what your equipment is doing. Decide which
two of the four timing numbers you will use to get ∆t.

Acceleration of a cart pulled by a hanging mass

If a cart is attached to a hanging mass as shown, then the force of gravity
on the hanging mass should cause both the hanging mass and the cart to
accelerate. The magnitude of the total force exerted by the hanging mass is
mhanging g, and this must equal the acceleration of the total mass of mtotal =
mhanging + mcart. Using this information, we can derive an expression for the
acceleration of the cart, which is the same as the acceleration of the total
mass since they are all connected.

F = mtotal atheoretical,
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ACCELERATION OF THE CART

F = mhanging g,

mtotal = mhanging + mcart,

⇒ atheoretical =
mhanging g

mhanging + mcart
. (1)

Applying force = mass× acceleration to this situation, this is the predicted
acceleration of the cart. We have not yet done the experiment. Therefore,
we call this expression for the expected acceleration atheoretical. Note that
everything on the right hand side of Equation (1), except for g, is either di-
rectly measurable or given. Furthermore, note that nothing on the right side
of Equation (1) depends on actually doing the experiment (that is, actually
letting the cart accelerate).

cart

hanging
mass

frictionless track

pulleystring

Figure 1

Acceleration of the cart

As is often the case, we are not able to directly measure what we want, the
acceleration of the cart. Instead, we make other measurements and obtain
the acceleration from those measurements. Using the markings on the track,
we can find xf and xi, and using the light gate we can find the time ∆t it
took to travel that distance. The total distance covered is ∆x = xf − xi.
Thus we can find the average velocity, v̄ = ∆x/∆t.

Assume that the cart starts at rest (vi = 0), and assume that the ac-
celeration (whatever it turns out to be) is constant. Then in time ∆t the
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G AS A FUNCTION OF THINGS WE CAN MEASURE

cart will reach a maximum speed (vf ) equal to twice v̄. (Ask yourself: why
twice?) But we know that vf must equal aexperimental ∆t, so we can derive an
expression for aexperimental.

aexperimental =
vf − vi

∆t
,

vf = 2v̄,

v̄ =
∆x

∆t
,

⇒ aexperimental =
2∆x

(∆t)2
. (2)

Note that everything on the far right side of Equation (2) is directly
measurable. Note, also, that in this derivation we have assumed that the
starting velocity vi = 0. If that weren’t the case, then vf would not be equal
to twice v̄. Thus, in the experiment coming up, we should be sure that the
speed of the cart really is zero when we start the timer. Otherwise, Equation
(2) does not apply!

g as a function of things we can measure

We expect that the theoretical value should equal the experimental value.
Therefore we can combine Equations (1) and (2) and solve for g:

atheoretical = aexperimental,

mhanging g

mhanging + mcart
=

2∆x

(∆t)2
,

⇒ g =
2(mhanging + mcart)∆x

mhanging (∆t)2
. (3)

Thus, by letting a cart accelerate and carefully measuring the various masses,
positions and times, we can determine g.

This is a good place to stop and think for a minute. Look at Equation
(3), and notice that the precision of our result depends on the precision
of our measurements. Furthermore, a sloppy job in taking just one of the
measurements will ruin the whole result. Thus, when doing an experiment,
you must do every step as carefully as you possibly can.

Phys 185 Lab 3: Acceleration Due to Gravity 3



PART 1: AN EXPERIMENT TO FIND G

Part 1: An experiment to find g

Using the a cart and hanging mass, do an experiment, using light gates and
the set-up shown in Figure 1, in which you find g. Make your hanging mass
at least 20 g. More would be fine. If the hanging mass is too small, the force
pulling the cart becomes too small compared to the force of friction in the
cart’s wheel bearings. Also pay attention to the length of the string—too
long and the hanging mass will hit the ground too soon, too short and the
distance traveled will be too small.

Your raw data will consist of mcart, mhanging, ∆x, and ∆t. From those data,
using Equation (3), you can calculate g. Do at least 2 different experiments
(the more the better). In other words, change at least one of ∆x, mcart and/or
mhanging, and see if you get the same (or close to the same) value of g for each
one.

Be careful: You need to make sure vi = 0 as the cart goes through the
first photogate!

How many significant figures should you give for your final result? Your
calculator can probably give you something to 8 or more figures, but are
all of those figures meaningful? To answer that question, you must look
at your measurements. To how many figures can you meaningfully report
mcart + mhanging? How about ∆x? How about mhanging and ∆t? All of those
must be considered, and the one which is the “weakest link” (that is, the
one with the fewest significant figures) determines the number of significant
figures in your final result.

Being aware of this issue of precision may actually affect how you choose
to do the experiment. As an example, if the distance between the starting
and stopping points is very small, then ∆x will be very small, and you will
not be able to determine it very precisely. But if you make that distance
very big, then even a larger imprecision in your position measurement will
not affect ∆x very much.

(Note: There are more accurate ways to deal with the fact that the ∆t is
squared in determining the number of significant figures for our final result.
For our purposes, it is sufficient to just concern yourself with the number of
significant figures in ∆t, not (∆t)2. In general, in this course I won’t require
you to pay detailed attention to significant figures. Just don’t get carried
away and write down everything your calculator spits out at you.)
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PART 2: COMPARING YOUR RESULT TO THE ACCEPTED VALUE

To hand in for part 1

• Your explanation of your choice of two of the four timing numbers.

• All raw measurements,

• Equation used to find g,

• Final results for g.

Part 2: Comparing your result to the accepted

value

The accepted value of g is, to 3 significant figures, 9.80 m/s2. If your result
is good to 3 significant figures, than that it what you should compare it to;
if your result is only good to two significant figures, then you should just
compare it to 9.8 m/s2, and so on. A common way to compare a value to an
accepted value is the percent error:

percent error =
|accepted value−measured value|

accepted value
× 100%.

It is also useful to compare your results with those of at least one other lab
group. You are doing the same experiment, so you should be getting similar
results. Your experiments will not and should not all turn out perfectly,
because of the limitations of your tools and because of the assumptions that
go into our derivations. However, I will expect you to at least notice that
there is a mistake. Try to find and correct all mistakes, and ask me for help
if it is necessary.

Something to keep in mind when comparing results of experiments to
accepted values is: What are the assumptions that went into this result, and
how good are they? For example, in this experiment, we assumed that the
cart rolled frictionlessly on the track, that the track was perfectly level, and
that the acceleration of the cart was constant. To the degree that any of
those assumptions are not really correct, your result should not agree with
the accepted value! This is another factor that influences how you do the
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PART 2: COMPARING YOUR RESULT TO THE ACCEPTED VALUE

experiment—the more carefully you level the track, for example, the more
correct your assumption of a level track is.

To hand in for part 2

• Quantitative comparison of your result for g with the accepted value,

• Qualitative comparison of your result for g with that of at least one
other lab group.
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