
Solutions to Assignment 5; Phys 185

1. (30 points) A ball with mass m, starting at rest, is dropped from a height of hi and
bounces on a hard floor. The force on the ball from the floor is shown in the figure. Find
the height hf to which the ball rebounds. τ is an amount of time.
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Answer: First, the speed of the ball as it hits the floor. From energy conservation,
mghi = 1

2
mv2i . Therefore vi = −

√
2ghi, with a − sign because it is headed downward.

This means the momentum of the ball just before hitting the floor is pi = mvi =
−m
√

2ghi. The area under the curve is ∆p = pf − pi, which is ∆p = 1
2
Fmaxτ . So on the

bounce back up, the momentum starts from pf = pi + ∆p = −m
√

2ghi + 1
2
Fmaxτ .

On the way up, we start with a velocity of vf = pf/m = −
√

2ghi + 1
2m
Fmaxτ . Using

energy conservation again, with 1
2
mv2f = mghf , we get

hf =
1

2g

(
Fmaxτ

2m
−
√

2ghi

)2

2. (30 points) You do a collision experiment with carts in the lab, but this time you
work with expensive equipment that reduces friction with the track to a negligible level.
You also work with carts that incorporate a spring that can be compressed and released
during a collision, imparting the energy stored in the spring to the carts rebounding from
the collision.

You set up the collision with a cart with mass 2m with initial velocity v2i = v heading
toward a cart with mass m that starts at rest. You measure the final velocity of the
cart with mass m in three different experiments, obtaining v1f = v, v1f = 4

3
v, and v1f =

2v. Analyze these three experiments and determine which experiments must have had a
compressed spring released during the collision.



Answer: Momentum conservation:

(2m)v + 0 = (2m)v2f +mv1f ⇒ v2f = v − 1

2
v1f

The change in total energy due to the collision will be the difference in initial and final
total kinetic energies, since no relevant potential energies apply, and there is no loss to
friction.

∆E =
1

2
(2m)v22f +

1

2
mv21f −

1

2
(2m)v2

Putting the result from momentum conservation in there,

∆E =
1

2
(2m)

(
v − 1

2
v1f

)2

+
1

2
mv21f −

1

2
(2m)v2

Now, we need to investigate the sign of ∆E. If ∆E > 0, extra energy has been added to
the carts, which would be because of the spring being released.

The first experiment, with v1f = v:

∆E =
1

2
(2m)

(
v − 1

2
v
)2

+
1

2
mv2 − 1

2
(2m)v2 = −1

4
mv2 < 0

This is an inelastic collision, and since ∆E < 0, there’s no evidence for a spring release
here.

The second experiment, with v1f = 4
3
v:
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1

2
(2m)

(
v − 1

2

4

3
v
)2

+
1

2
m
(

4

3
v
)2

− 1

2
(2m)v2 = 0

This could be an elastic collision, which could happen without a spring being released. So
again, there’s no evidence for a spring release.

The third experiment, with v1f = 2v:

∆E =
1

2
(2m)

(
v − 1

2
2v
)2

+
1

2
m (2v)2 − 1

2
(2m)v2 = mv2 > 0

There is no way ∆E > 0 without the spring release! It must have happened in this third
experiment.

3. (40 points) Remember how we got the gravitational potential energy mgh: the
applied force acting against gravity had a magnitude of mg, and we found the area under
the force-versus-distance curve, a rectangle of height mg and base h.

Now we want to generalize this to beyond locations close to the Earth’s surface. Take
the gravitational force magnitude FG between two point masses m1 and m2 separated by
a distance r. We will again look at the area under the force-distance curve.



(a) Sketch a graph of FG versus r.
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Now, according to your sketch, do you do more work in changing r from R to 1.1R,
from 2R to 2.1R, or from 3R to 3.1R?

Answer: You’ll do the most work in going from R to 1.1R, as that is the largest
additional area under the curve. From 3R to 3.1R is the least work.

(b) The convention for gravitational potential energy is to say that it is zero when the
masses are infinitely far from each other. So the expression for UG must become very
small as r becomes large. Given this, and the behavior you found in part (a), which
of the following is the correct general equation for UG? (Only one of the options
given is consistent with what you found about UG.)

(i) UG = 1
2
Gr2

(ii) UG = m1m2r

(iii) UG = m1

m2
e−Gr

(iv) UG = − lnGr

(v) UG = −Gm1m2/r. This is the only one that behaves according to (a),
is very small as r becomes very large, has the proper units, and where
m1 and m2 are interchangeable.

(c) Given your UG, find the escape speed of an object launched away from Earth. This
is the minimum speed necessary to never fall back to Earth under the influence of
gravity: You start from r equal to the radius of Earth and speed equal to your escape
speed, and end up at r equal to infinity and the object at rest. You can look up data
about the Earth to find a numerical result.

Answer: Use energy conservation. The final energy is 0, since as r →∞, UG → 0,
and the object is at rest and has no kinetic energy. The initial energy must therefore
add up to zero:

1

2
mv2 − GmEm

rE
= 0



Solving for v, we get

v =

√
2GmE

rE
= 1.12× 104 m/s

(d) Find an equation for the radius rs for the event horizon of a black hole with mass m.
The event horizon marks the point beyond which nothing can return, since it would
have to travel faster than light. You find rs by setting the escape speed equal to the
speed of light c.

Answer: You just set √
2Gm

r
= c ⇒ r =

2Gm

c2


