
Solutions to Exam 2; Phys 186

1. (20 points) You have a positively charged particle moving in a uni-
form magnetic field pointing in the +x direction. In other words, the vector
components Bx > 0, By = 0, Bz = 0. The charged particle has velocity
components vx > 0, vy > 0, vz = 0.

(a) Draw x and y axes, putting the charged particle at the origin. Then
draw arrows indicating the magnetic field the particle experiences, its
velocity, and the magnetic force on the particle. If you need to indicate
a vector in or out of the paper, use the usual cross or dot notation.
Label your vectors.

Answer: B⃗ toward the right, v⃗ at an angle in the first quadrant, and
F⃗ into the page.

(b) Pick between these descriptions of the particle’s motion. Then explain
why it is so.

(i) The particle will move in a circle within the x–y plane

(ii) The particle will move in a spiral with constant radius

(ii) The particle will move with increasing speed in the +z direction

(iv) The particle will oscillate along the x axis

(v) The particle will trace a sine wave along the y axis

Answer: Only the component of the velocity perpendicular to B⃗ will
be affected by the magnetic force. Therefore the parallel component vx
is unaffected, and vy will be bent into a circle in the y–z plane. This
describes a spiral.

2. (25 points) Draw a circuit diagram for an RC-circuit, with an R and C in
series, all connected to a function generator set to produce a sine wave. You
have the following options for how Q, the charge on the capacitor, behaves
as a function of time:



(a) A sine wave with the same frequency as the function generator

(b) A sine wave with double the frequency of the function generator

(c) A square wave with the same frequency as the function generator

(d) A square wave with double the frequency of the function generator

(e) A sawtooth wave with the same frequency as the function generator

(f) A sawtooth wave with double the frequency of the function generator

Sketch qualitative graphs of Q vs t and I vs t, where I is the current in
your circuit. Then, using these graphs and any others you care to make,
explain why your choice is the correct one. Note: You will need to use either
your math knowledge, your experience in the lab with waveforms, or playing
around with graphing software such as desmos.com as an important part of
your argument. Make sure you include all the details of your reasoning.

Answer: The circuit is the same as what you had in your Lab 8.
The loop equation gives Vf = VR+VC . So the voltage across the capacitor

and the voltage across the resistor must add up to give the function generator
voltage, a sine wave. Putting in the charge and the current,

Vf = RI +
Q

C
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d
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Q+

Q
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Since the current is due to the charges moving back and forth to the plates of
the capacitor, the rate of change of Q is I. Therefore, your sketch of your I
graph should look like the slope of your Q graph. The slope of a sine wave is
another sine wave, except that it will be phase-shifted by π/2 (changing a sine
into a cosine, for example); in any case, just tracing the slopes should lead
you to another sine wave. Now, you might remember from your math that
a sine wave plus another sine wave, even when its phase is shifted, is always
yet another sine wave with the same frequency. Or, you might remember
adding sine waves to get another sine wave while playing around with the
oscilloscope in the lap. Failing all that, you can play with adding sine waves
on a graphing calculator and see that it’s a sine wave that results. In any
case, adding a constant times a sine wave plus another constant times a sine
wave results in a sine wave with the same frequency, so you can satisfy the
loop equation with choice (a).



None of the other choices will work. Working with double the frequency
will end up with waves that are double the frequency. The slope of the square
wave will give you spikes that would not lead to the original sine wave. And
the slopes of the sawtooth will give you a square wave, which again does not
add to anything useful.

3. (25 points) You have two circuits next to each other:

RL RR

V (t)

L R

C

Circuit L has a voltage source which is a function generator that produces a
square waveform V (t), which looks like the following on an oscilloscope:

0.2 V

0.1 V

−0.1 V

−0.2 V

2 ms 4 ms 6 ms

(a) You have the frequency of the function generator set such that the
amplitude of the voltage across the capacitor is about 0.18 V (90% of
the amplitude of the source voltage). Sketch the shape of the waveform
you will see if you measure the current in circuit L. Don’t put in any
numbers—just sketch the waveform. Explain how you arrived at your
conclusion.



Answer: I’ve drawn the capacitor voltage waveform Vc on the upper
graph as well. The loop equation for circuit L is V (t) = Vc + R1IL,
which means, since the resistance is constant, that IL ∝ (V (t) − Vc).
You have to draw the shape of the difference between the two voltage
waveforms.

2 ms 4 ms 6 ms

(b) Now sketch the shape of the waveform you will see if you measure the
current in circuit R under these conditions. Explain how you arrived
at your conclusion.

Answer: IR is a current induced in circuit R due to the changing
magnetic flux. The magnetic field is produced by IL. The only thing
that is changing is IL; anything else is a constant that does not affect
the shape of the curve. Therefore IR ∝ − d

dt
IL. Therefore the shape of

this current can be read off the changing slope of the IL graph above.
The graph ends up looking very similar.

2 ms 4 ms 6 ms



(c) You have the frequency of the function generator set such that the
amplitude of the voltage across the capacitor is about 0.02 V (10% of
the amplitude of the source voltage). Sketch the shape of the waveform
you will see if you measure the current in circuit L.

Answer: The reasoning here is very similar. Now the current shape
is still the voltage difference, but the frequency is higher and the am-
plitude of Vc is much smaller.

(d) Now sketch the shape of the waveform you will see if you measure the
current in circuit R under these conditions.

Answer: Again, very similar. You may remember from calculus that
the derivative of an exponential is an exponential. Capacitors charging
up and discharging are described by exponentials.



4. (30 points) Say you’re doing the lab where you accelerated and shot a
beam of electrons onto a screen. The mass of an electron is me = 511 keV/c2.

(a) You accelerated the electrons through a voltage difference of up to 5.00
kV on your dial. At Va = 5.00 kV, then, what is the kinetic energy
of the electrons in the beam, in units of keV? Hint: 1 eV is literally
the electron charge magnitude e multiplied by 1 V. Therefore, you
shouldn’t need any real calculation to get this answer.

Answer: e(5 kV) = 5 keV.

(b) What fraction of the speed of light are these electrons traveling? Use
1
2
mev

2 for your kinetic energy, as in your homework and the lab.

Answer: The usual energy conservation gives

5 keV =
1

2
(511 keV)

v2

c2
⇒ v

c
=

√
2 · 5
511

= 0.140

14% of the speed of light. I mentioned that our electrons in the lab
were fast.

(c) Recalculate the fraction of the speed of light the electron has, using a
more appropriate expression for kinetic energy.

Answer: A more accurate calculation of the speed would go like
this. The total energy of the electron is γmec

2, while the energy of an
electron at rest, where γ = 1, is mec

2. Therefore, the kinetic energy,
which is the additional energy an object has due its motion, must be
the difference: K = (γ − 1)mec

2. We can use this relativistic form
of kinetic energy to recalculate the fraction of the speed of light the
electron has.

Here, γ depends on v/c, so after some algebra,

v

c
=

√√√√√1− 1(
1 + K

mec2

)2 = 0.139

Again, 14% of the speed of light.



(d) Compare your results in (b) and (c). Do you think relativity was im-
portant enough to account for in your lab?

Answer: The answers are very similar; you did not need relativity.
While very fast, the electrons are not close enough to the speed of light
for relativistic effects to become important.

(e) Say you got a lot more expensive equipment that could provide an
accelerating voltage of up to Va = 500 kV. In that case, what would
you calculate the speed of the electrons to be (as a fraction of the speed
of light) if you used K = 1

2
mev

2?

Answer: Same calculation:

500 keV =
1

2
(511 keV)

v2

c2
⇒ v

c
=

√
2 · 500
511

= 1.40

140% of the speed of light. That should raise an eyebrow.

(f) Redo the calculation for v as a fraction of the speed of light with Va =
500 kV, but now using the correct expression for kinetic energy.

Answer: Same calculation:

v

c
=

√√√√√1− 1(
1 + K

mec2

)2 = 0.863

86% of the speed of light.

(g) Compare your results with different expressions for kinetic energy in
(e) and (f) and interpret what they mean.

Answer: Clearly the nonrelativistic calculation is wrong: faster than
light? The electrons are now moving close enough to the speed of light
that relativity becomes important, and the proper relativistic kinetic
energy expression is necessary.



(h) Again, Va = 500 kV. In the lab reference frame, the copper coils with
the current providing the magnetic field were circles with a radius of
about R = 6.8 cm. Sketch how the coils look in the electrons’ reference
frame, and calculate the appropriate dimensions (height, width) for the
coil in that frame.

Answer: Here, γ = 1.98. The coil is not moving in the lab frame,
therefore its dimensions are proper lengths. Length contraction will
occur along the direction of motion, so the width will contract down to
2 · 6.8/1.98 = 6.9 cm. The height is perpendicular to the direction of
motion, so this will not be contracted, remaining at 2 · 6.8 = 13.6 cm.
The circle will now look like an ellipse.


