
Solutions to Assignment 6; Phys 185

1. (30 points) You have a glass with massm bouncing off the floor. Its duration of contact
with the floor—the time difference between first touching the floor and last touching the
floor—is τ . Its velocity when it first touches the floor is viy, and its velocity as it launches
off the floor is vfy. If, at any time during its contact with the floor, the force on the glass
ever exceeds Fmax, even for the tiniest fraction of a second, the glass will break. Note that
the force on the glass during its collision with the floor will not be constant, and you have
no idea what the exact force graph looks like.

(a) Write down an inequality describing the condition under which it is certain that the
glass will break. Hint: Sketching an F vs. t graph might help you think about this.

Answer: The change of the momentum of the glass will be the area under the F
vs. t graph. If we want the glass not to break, but the maximum ∆py to take place,
the force will have to be a flat Fmax during the whole time interval. This means that
the limit for the glass not breaking is

Fmaxτ = m (vfy − viy)

The better way to express this is that the glass will certainly break if

Fmaxτ < m (vfy − viy)

(b) Let’s say the inequality you wrote down does not hold. Does this mean that the glass
is certain to remain unbroken? Explain.

Answer: No, the glass can still break if the area under the curve remains smaller
than Fmaxτ , but at some time the force goes up above Fmax.

2. (30 points) You do a collision experiment with carts in the lab, but this time you
work with expensive equipment that reduces friction with the track to a negligible level.
You also work with carts that incorporate a spring that can be compressed and released
during a collision, imparting the energy stored in the spring to the carts rebounding from
the collision.

You set up the collision with a cart with mass 2m with initial velocity v2i = v heading
toward a cart with mass m that starts at rest. You measure the final velocity of the
cart with mass m in three different experiments, obtaining v1f = v, v1f = 4

3
v, and v1f =

2v. Analyze these three experiments and determine which experiments must have had a
compressed spring released during the collision.

Answer: Momentum conservation:

(2m)v + 0 = (2m)v2f +mv1f ⇒ v2f = v − 1

2
v1f



The change in total energy due to the collision will be the difference in initial and final
total kinetic energies, since no relevant potential energies apply, and there is no loss to
friction.

∆E =
1

2
(2m)v22f +

1

2
mv21f −

1

2
(2m)v2

Putting the result from momentum conservation in there,

∆E =
1

2
(2m)

(
v − 1

2
v1f

)2

+
1

2
mv21f −

1

2
(2m)v2

Now, we need to investigate the sign of ∆E. If ∆E > 0, extra energy has been added to
the carts, which would be because of the spring being released.

The first experiment, with v1f = v:

∆E =
1

2
(2m)

(
v − 1

2
v
)2

+
1

2
mv2 − 1

2
(2m)v2 = −1

4
mv2 < 0

This is an inelastic collision, and since ∆E < 0, there’s no evidence for a spring release
here.

The second experiment, with v1f = 4
3
v:

∆E =
1

2
(2m)

(
v − 1

2

4

3
v
)2

+
1

2
m
(
4

3
v
)2

− 1

2
(2m)v2 = 0

This could be an elastic collision, which could happen without a spring being released. So
again, there’s no evidence for a spring release.

The third experiment, with v1f = 2v:

∆E =
1

2
(2m)

(
v − 1

2
2v
)2

+
1

2
m (2v)2 − 1

2
(2m)v2 = mv2 > 0

There is no way ∆E > 0 without the spring release! It must have happened in this third
experiment.

3. (40 points) Remember how we got the gravitational potential energy mgh: the
applied force acting against gravity had a magnitude of mg, and we found the area under
the force-versus-distance curve, a rectangle of height mg and base h.

Now we want to generalize this to beyond locations close to the Earth’s surface. Take
the gravitational force magnitude FG between two point masses m1 and m2 separated by
a distance r. We will again look at the area under the force-distance curve.

(a) Sketch a graph of FG versus r.
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Now, according to your sketch, do you do more work in changing r from R to 1.1R,
from 2R to 2.1R, or from 3R to 3.1R?

Answer: You’ll do the most work in going from R to 1.1R, as that is the largest
additional area under the curve. From 3R to 3.1R is the least work.

(b) The convention for gravitational potential energy is to say that it is zero when the
masses are infinitely far from each other. So the expression for UG must become very
small as r becomes large. Given this, and the behavior you found in part (a), which
of the following is the correct general equation for UG? (Only one of the options
given is consistent with what you found about UG.)

(i) UG = 1
2
Gr2

(ii) UG = m1m2r

(iii) UG = m1

m2
e−Gr

(iv) UG = − lnGr

(v) UG = −Gm1m2/r. This is the only one that behaves according to (a),
is very small as r becomes very large, has the proper units, and where
m1 and m2 are interchangeable.

(c) Given your UG, find the escape speed of an object launched away from Earth. This
is the minimum speed necessary to never fall back to Earth under the influence of
gravity: You start from r equal to the radius of Earth and speed equal to your escape
speed, and end up at r equal to infinity and the object at rest. You can look up data
about the Earth to find a numerical result.

Answer: Use energy conservation. The final energy is 0, since as r → ∞, UG → 0,
and the object is at rest and has no kinetic energy. The initial energy must therefore
add up to zero:

1

2
mv2 − GmEm

rE
= 0



Solving for v, we get

v =

√
2GmE

rE
= 1.12× 104 m/s

(d) Find an equation for the radius rs for the event horizon of a black hole with mass m.
The event horizon marks the point beyond which nothing can return, since it would
have to travel faster than light. You find rs by setting the escape speed equal to the
speed of light c.

Answer: You just set √
2Gm

r
= c ⇒ r =

2Gm

c2

Extra Problems (not graded)

4. (0 points) A roller coaster cart starts from an initial height h, goes downhill at an
angle θ with the horizontal, travels a horizontal distance d, and goes through a loop with
radius r.

h

θ

d

r
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(a) Assuming dissipative forces such as friction and drag are negligible, what is the
minimum height hmin for the cart to be able to complete the loop?

Answer: We’ve previously obtained vmin =
√
gr. Using this, energy conservation

gives:
mghmin = mg(2r) + 1

2
m (

√
gr)2 ⇒ hmin = 5

2
r



(b) Assume that the cart loses energy to dissipative forces at a rate of ε per length of
track traveled: if, for example, it travels a distance l, then Eloss = εl. In that case,
what would hmin now be?

Answer: The total distance covered is the length of the downhill stretch, the hori-
zontal past, and half the circumference of the circle. Therefore Eloss = ε (h/ sin θ + d+ πr).
Using this, energy conservation becomes

mghmin = mg(2r) + 1
2
m (

√
gr)2 + Eloss ⇒ hmin = 5

2
r +

ε

mg

(
hmin

sin θ
+ d+ πr

)

With hmin on both sides, a bit more algebra gives:

hmin =
5
2
r + ε

mg
(d+ πr)

1− ε
mg sin θ

For ε > 0, hmin > 5
2
r, as it should be.

(c) Describe the ways in which the assumption of losing ε per length traveled, regardless
of the orientation of the track, is not completely accurate.

Answer: With friction, Eloss = −Wf = fkl. But the magnitude of the friction
force depends on the orientation of the track: maximum when flat, and smaller as
the angle increases. So at least on the circle, the loss cannot be independent of
orientation. (If you work it out, the loss depends on θ on the downhill part as well,
but a verbal argument is sufficient.)

5. (30 points) You decide to design a variation on the idea of a ballistic pendulum.
You keep the part with a bullet with mass m and initial velocity v0 embedding in a block
of mass M . But after that totally inelastic collision, instead of having the bullet-block
combination swing upwards on a pendulum, you let it slide on a rough and flat surface,
with a coefficient of kinetic friction µk. You wait for the bullet-and-block to come to a
stop, and measure the distance d it traveled from the point where the bullet first struck
the block.

� m

d

v0M

(a) Find an equation for v0. Hint: Think about how to account for the work done by
friction, which will give you the energy loss.



Answer: Use momentum conservation for the first step:

mv0 = (M +m)v ⇒ v =
m

M +m
v0

The kinetic energy coming out of the collision will be

Ki =
1

2
(M +m)

(
m

M +m
v0

)2

=
m2

2(M +m)
v20

Since the final kinetic energy Kf = 0, all this energy must go into the work done
against friction. Since the kinetic friction for a flat surface is f = µkn = µk(M+m)g,
we can calculate this as

Wf = µk(M +m)gd = ∆Eth

Setting these equal,

µk(M +m)gd =
m2

2(M +m)
v20 ⇒ v0 =

(
M +m

m

)√
2µkgd

(b) Assume you will use your setup to measure bullet speeds of around v0 = 500m/s,
with bullet masses around m = 0.01 kg. Other reasonable values would be µk = 0.5
and d = 1.0m, which is practical to measure in the lab. What, then, would the block
mass M have to be in your setup?

Answer:

M = m

(
v0√
2µkgd

− 1

)
= 1.6 kg


