
Solutions to Assignment 9; Phys 185

1. (30 points) You have a slab of material through which heat is being conducted at a
rate of dQ/dt. The thickness of the material is L, the temperature on one side is T1 and
on the other side it’s T2.

(a) What is the temperature in the middle of the slab, a distance L/2 from either side?
Hint: The same heat is going through at the same rate through both halves of the
slab.

Answer: Since both halves of the slab are identical, and they have the same
heat flow through them, they must have the same temperature difference across
them. Therefore the temperature at the halfway point must be halfway between the
temperatures of either end. If we express that more mathematically, we have, with
Tm the middle temperature,
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L/2
(T1 − Tm) = k

A

L/2
(Tm − T2) ⇒ T1 − Tm = Tm − T2 ⇒ Tm =

T1 + T2

2

(b) Make a graph of T (x), the temperature within the slab, with x = 0 one side of the
slab and x = L the other side. Give your reasoning for the shape you drew.
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Answer: The argument in (a) applies if you take each half and halve them in turn,
making quarters. And so forth. So the temperature profile has to be a straight line
connecting the temperatures at the ends.

(c) You have a double-glazed window between the inside of a room at Tin and the outside
at Tout. The thickness of the the two glass panes and the air trapped is all equal, L.
The thermal conductivity of air is less than glass: ka < kg. Make a graph of T (x),
the temperature within the window, with x = 0 one side of the slab and x = 3L the
other side. Give your reasoning for what you drew.
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Answer: The same heat is going through all three layers. The difference now is
that there are different thermal conductivities in play. Call the temperatures at the
glass-air interfaces Tm1 and Tm2, we have

kg
A

L
(Tin − Tm1) = ka

A

L
(Tm1 − Tm2) = kg

A

L
(Tm2 − Tout)

With the A’s and L’s canceling out, this means that the temperature difference
across the glass panes is smaller than the temperature difference across the air.
We’ve already established that within the same material, the temperature changes
in a linear fashion.

2. (40 points) If you look up how convection works, you will find dQ/dt = hA∆T , where
A is the surface area of an object, and h is a convection coefficient that depends on the
material and its geometric shape. You know how conduction and radiation works.

(a) You have two cubes made of identical materials, in identical environments, at iden-
tical starting temperatures. Cube 1 has a side of length a, cube 2 has 2a. Find the
ratio of the rates at which each cube cools:(

∆T1
∆t

)
(

∆T2
∆t

)
Note: ∆T refers to the temperature difference with the environment. ∆T1 and ∆T2

are different—they refer to the change in temperature over time of cubes 1 and 2.
Also, you’ll need this: for the small temperature ranges in question, dQ/dt = Q/∆t.

Hint: Your final result should be a number, with no symbols. Cancel things!

Answer: Add up the heat loss rates for cube 1:

dQ1

dt
=
Q1

∆t
=
kA1∆T

L
+ hA1∆T + eσA1∆T 4 =

[
k∆T

L
+ h∆T + eσ∆T 4

]
A1



Notice that the factor in brackets depends on the material of the cube and its sur-
rounding environment—not the size of the cube! Calling the bracketed factor α, we
then have

Q1

∆t
= αA1 and

Q2

∆t
= αA2

For the temperature change, we use

Q1 = m1c∆T1 = ρV1c∆T1 = [ρc]V1∆T1

where ρ is the density of the material, and V1 is the volume of cube 1. Again, the
bracketed factor depends only on the material, and therefore is the same for both
cubes. Call it β. So

Q1 = βV1∆T1 and Q2 = βV2∆T2

Putting the heat loss and the temperature equations together, we get

βV1∆T1

∆t
= αA1

With some rearranging,

∆T1

∆t
=
α

β

A1

V1

and
∆T2

∆t
=
α

β

A2

V2

Finally, when we take the ratio, the constants α and β cancel out, and we’re just left
with the ratios of surface-area-to-volume ratios:(

∆T1
∆t

)
(

∆T2
∆t

) =
α
β
A1

V1
α
β
A2

V2

=
A1

V1
A2

V2

=
6a2

a3

6(2a)2

(2a)3

= 2

The small cube will cool down twice as fast.

(b) Use this to predict whether in cold climates, small or large animals will have propor-
tionally thicker coats, and area-reducing adaptations such as smaller external ears.
Explain.

Answer: The result of (a) means that smaller animals cool down faster. So they
have higher adaptive pressure on them to reduce their heat loss—proportionally
thicker coats, and smaller external ears and so forth.

3. (30 points) Take a small bubble of air at a depth d below the ocean surface. There are
N molecules of air in the bubble, and air is approximated very well as an ideal gas. Let’s
assume that the bubble is small enough that we can assume a single depth and a single
pressure value accurately characterizes the bubble. Let’s also assume that the ocean has
a constant temperature T at any depth, and that the air is always in thermal equilibrium
with the ocean. Use patm to represent atmospheric pressure and ρw to represent the density
of water.



(a) Write down an equation for V , the volume of the bubble.

Answer: Use pV = NkT , and the fact that the pressure within the bubble will be
equal to the water pressure at its depth, p = patm + ρwgd:

V =
NkT

patm + ρwgd

(b) Now write down an equation for the buoyancy force FB on the bubble.

Answer: The buoyancy force is equal to the weight of water of an equal volume:

FB = ρwV g =
NkTρwg

patm + ρwgd

(c) Make a rough sketch of the buoyancy force versus depth. Make sure the sketch is
clear about whether FB almost at the surface (d = 0) is zero, infinite, or a finite
value.

Answer: The curve for FB should begin with a finite value for d = 0, and mono-
tonically decrease without ever becoming zero.

Extra Problems (not graded)

4. (0 points) You have a cube with sides a floating in water, with density ρw. You mark
where the water line is on the cube. Then, you push down the cube by an extra depth d,
and let go of the cube. Assume that d� a and that you’re able to uniformly push the cube
down and so forth—in other words, assume that drag forces and any other complications
are negligible.

d

(a) Find what the total force on the cube is at the instant you let it go at depth d.

Answer: The only forces are the weight of the cube and the buoyancy force. We
then use

∑
Fy = FB − w = may. When the cube was floating,

∑
Fy = 0, and



therefore FB canceled out w. But when you push the cube down an extra depth d,
it picks up extra buoyancy without changing its weight. The extra buoyancy is the
weight of water with volume equal to the extra submerged volume:∑

Fy = FB − w = ρw(a2d)g = may

The result is a total force that points directly upward.

(b) When d = 0, what should the total force be? Check if your answer to (a) behaves
accordingly.

Answer: When d = 0, FB cancels out w, making the total force 0. The answer to
(a), ρwa

2dg, becomes 0 when d = 0, which is therefore as it should be.

(c) Your total force depends on d in a way precisely analogous to how another force we
have examined this semester depends on a displacement from equilibrium. Identify
this force. Then, using this analogy, qualitatively describe the motion your cube will
exhibit once you let it go.

Answer: The other force that behaves the same way is the spring force. The spring
force is proportional to the extension and compression, and is a restoring force—it
is opposite to the displacement, toward equilibrium.

You know from your experience with springs that if you extend a spring with a mass
attached and let it go, it will oscillate up and down. The floating cube will bob up
and down in the water in exactly the same way.

(d) Write down an equation giving the period of the oscillations of the cube.

Answer: With a spring, we had −kx = max. With the floating cube, d is a
downward displacement, so d = −y. We can therefore write the equation describing
the cube’s motion as −(ρwa

2g)y = may. This is exactly the same as the spring
equation, with the constant ρwa

2g playing the role of the spring constant. Since for

a spring, T = 2π
√
m/k, the period of the floating cube must be

T = 2π

√
mc

ρwa2g
= 2π

√
ρca

ρwg

where mc is the mass of the cube, or ρc is the density of the cube.

5. (0 points) If a space traveler were to step out into the vacuum of empty space, far away
from all stars and other sorts of heat, she would be in an environment close to absolute



zero: the 3 K of the cosmic microwave background radiation, in fact. To calculate if she
would freeze to death, you gather the following information. The thermal conductivity
of her clothes: 0.05 W/m·K. Thickness of her clothes: 0.010 m. Her surface area: 1.8
m2. The emissivity of her clothes surface: 0.5. Stefan-Boltzmann constant: 5.67 × 10−8

W/m2·K4. The surface temperature of her clothes: 35◦C. The specific heat of mammalian
tissue: 3400 J/kg·K. Her mass: 56.0 kg. Rate of thermal energy generation by a human
body at rest: 100 W. (Not all these values are necessarily useful!)

(a) Calculate the rate the astronaut absorbs heat from the microwave background.

Answer: With Tµ = 3 K,

dQ

dt
= eσAT 4

µ = 4.13× 10−6 W

This is miniscule, as you might expect.

(b) Calculate her net rate of heat loss.

Answer: In outer space, you won’t lose any heat due to conduction or convection,
so the radiative heat loss is all you need to consider. Now, T = 35 + 273 = 308 K, so

dQ

dt
= eσAT 4 = 459 W

Technically, you should subtract the absorption due to the cosmic microwave back-
ground, but that is negligible in comparison. What is not negligible is the 100 W
generated by her metabolism, so

dQnet

dt
= 459 W− 100 W = 359 W

This will turn out not to be too bad.

(c) Calculate the rate at which her body temperature will drop, which is dT/dt ≈ ∆T/∆t
for small time intervals.

Answer: Using Q = mc∆T for temperature change,

359 W =
mc∆T

∆t

and so
dT

dt
=

359 W

(56.0 kg)(3400 J/kg·K)
= 1.89× 10−3 K/s

This is slow.



(d) How long will it take for her to cool by 1 K?

Answer:
1 K

1.89× 10−3 K/s
= 530 s ≈ 9 minutes

Freezing to death is not her immediate problem in this situation.


