
Solutions to Exam 1; Phys 185

1. (60 points) You set up an experiment to measure the coefficient of kinetic friction between
the cart and track we’ve been using in the lab. You lay the track flat, set a single light gate
close to one end of the track, and send a cart with a sail through the light gate. You practice
until you get the initial velocity of the cart such that the cart slows down and stops close to the
other end of the track without falling off. For each trial, then, you will have three quantities
you can measure: l (the length of the sail), d (the distance between the light gate and the
trailing end of the sail at the point where the cart stops), and τ = t2 − t1 (the time interval
between the sail entering the light gate at t1 and exiting the light gate at t2).

(a) If the sail length l is small, and you’re using a low friction track, you can assume that
friction will have a negligible effect during the short distance through the light gate.
You can then determine the initial velocity of your cart by assuming that the cart has
a constant velocity through the light gate, and that friction starts taking effect only
after the cart is through. Under these assumptions, find an equation for µk in terms of
quantities that you know or can measure.

Answer: The forces acting on the cart are weight, normal force, and friction. Therefore,∑
Fx = wx + nx + fkx = 0 + 0− fk = −µkn = max∑

Fy = wy + ny + fky = −mg + n+ 0 = 0

Combining these, we get
ax = −µkg

If we can assume constant velocity within the gate, the velocity exiting the gate is
v2x = l/τ . The time to come to a stop will then be

0 =
l

τ
− µkgt ⇒ t =

l

µkgτ

We also know the distance to come to a halt, d. Therefore

d = 0 +
l

t

l

µkgτ
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2
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(
l
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=
l2

2µkgτ 2

Solving, we get

µk =
l2

2gdτ 2

for the friction coefficient.



(b) But there is friction as the cart moves through the light gate, and the velocity coming
out of the light gate should be slightly less than what you calculated in (a). Now do a
more proper calculation, accounting for the effect of friction as the cart goes through the
light gate. You will end up with a quadratic equation for µk; it is sufficient if you find
this equation (you don’t have to solve it for µk, though that isn’t too difficult).

Answer: Friction means that the velocity exiting the gate, v2x, is smaller than the entry
velocity v1x. The forces are the same as before, so ax = −µkg remains true. Therefore,
for the passage through the light gate,

v2x = v1x− µkgτ and l = v1xτ − 1
2
τ 2

We need v2x, the exit velocity from the light gate. To get there, we first need to solve
the second equation for v1x:

v1x =
1

τ

(
l + 1

2
τ 2
)
⇒ v2x =

l

τ
+ 1

2
µkgτ − µkgτ =

l

τ
− 1

2
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This is smaller than l/τ , the velocity out of the gate used in part (a), which is as it
should be.

Now, we repeat the calculation of part (a), but with this different initial velocity. The
result will just be replacing l/τ with the corrected value, so

µk =
1

2gd

(
l

τ
− 1

2
µkgτ

)2

This equation has µk on both sides. To solve it, we need to do the square, and arrange
everything into a quadratic equation:

2µkgd =
l2

τ 2
− lµkg + 1

4
µ2
kg

2τ 2 ⇒
[
1
4
g2τ 2

]
µ2
k − [(l + 2d)g]µk +

[
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]
= 0

The solution we want is, after some simplification,

µk =
2

gτ 2

(
l + 2d− 2

√
d(d+ l)

)
Leaving it as a quadratic equation is fine, though.

(c) Reasonable values in the lab might be l = 0.15 m, d = 1.60 m, and τ = 0.600 s. Calculate
µk according to your result in (a) and in (b). Is the approximation in (a) valid?

Answer: The approximate answer from (a) is, when you put in the numbers, µk =
0.0020. The more accurate answer from (b) is µk = 0.0019.

These are not very different, as we might expect from a low-friction track. But it is,
nonetheless, a 5% error. If you want any accuracy in determining µk, you do need the
more complicated equation.



2. (40 points) The drag equation we worked with is an approximation useful for low-density
gases, such as air, under everyday conditions. Then, we had D = (constants)v2. But under
different conditions, the speed-dependence of drag can be different. In general, D = f(v),

where f(v) is a function of speed, and the direction of ~D is always opposite the velocity ~v.
The following four graphs represent four different cases for D = f(v). With each of these

four drag forces, you release an object from rest, and let it fall under the influence of only
gravity and that drag force. In each of these cases, the object will do one of:

i. Always speed up until it reaches a downward terminal velocity.

ii. Never reach a downward terminal velocity.

iii. It may or may not reach a terminal velocity, depending on a condition.

For each of the graphs, identify what happens and give an explanation why. If you choose
option (iii) for a graph, tell me the condition for reaching terminal velocity.
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Answer: An object approaches terminal velocity because
the drag force on it increases with its speed, which means that
an increasing drag force acts opposite to its weight, coming
closer and closer to canceling out the weight entirely. In this
case, the drag force magnitude D increases as v increases, and
D = mg will happen at some v, regardless of the mass m. So
(i) will be correct: speed up until a terminal velocity.

-

6D

v

m2g

m1g

.
.........................

......................

...................
.................
....... ...........
...............
...................
.........................
........................ ............ ............... .................. ............. ............... ................. ...................................................................................... ............... ............ .......... ....... Answer: This one is (iii). If m1g is smaller than the value

where D levels off, D = m1g will happen, and that will be a
terminal velocity. But if the weight m2g is too large, D = m2g
will not be possible, and there will be no terminal velocity.
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Answer: This is (ii). It may look like D = mg is possible,
hence there is a terminal velocity. But you will never reach
it if you start at vy = 0. In this case, you will get

∑
Fy > 0,

and you will accelerate upwards, and your velocity will be in
the wrong direction.
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Answer: This is another (i). As the object falls, it will
speed up and D will grow toward mg. In this graph, there
is a maximum possible vT regardless of the mass m, which is
peculiar, but there still is a vT .


