
Solutions to Exam 3; Phys 185

1. (60 points) You have a monatomic ideal gas that goes through the cycle 1 → 2 → 3 →
4→ 1 shown in the diagram. No gas molecules are added or removed during the cycle.

The 4 → 1 and 2 → 3 parts of the cycle at at constant volume. The 1 → 2 and 3 → 4
curves are such that the quantity pV 5/3 remains constant during these processes. You also
know that p1 = 2p0, V1 = V0, V2 = 2V0 and p4 = p0, where p0 and V0 are constants.

-

6

V

p

V0 2V0

p0

2p0

2

3

4

1

6 R

.
..............
..............
.

..............
..............

...............
...........

...............
..........

................
.......

..................
.....

......................
...

.......................... ............................ .............................

?
i

.
...............
.....

................
...

....................
.

........................ .......................... ............................. ............................... ..................................

(a) Find p2 and p3. Your answers should be numbers multiplied by p0.

Answer: At point 1, pV 5/3 = 2p0V
5/3
0 . Therefore, p2(2V0)

5/3 = 2p0V
5/3
0 , leading to

p2 = 2−2/3p0 = 0.63 p0.

Similarly, p3(2V0)
5/3 = p0V

5/3
0 and p3 = 2−5/3p0 = 0.31 p0.

(b) The area under the curve on the p-V diagram for curves where pV 5/3 is constant, going
from from an initial pi and Vi to a final pf and Vf , is

−3
2
piV

5/3
i

(
V
−2/3
f − V −2/3i

)
Find the work done on the gas for each step of this cycle: W1→2, W2→3, W3→4, W4→1.
Your answers should be numbers multiplied by p0V0.

Answer: The works are negatives of the areas under the curves.

W1→2 = 3
2
2p0V

5/3
0

[
(2V0)

−2/3 − V −2/30

]
= 3(2−2/3 − 1)p0V0 = −1.11 p0V0

W2→3 = 0

W3→4 = 3
2
p0(2V0)

5/3
[
V
−2/3
0 − (2V0)

−2/3
]

= 3
2
(1− 2−2/3)p0V0 = 0.56 p0V0

W4→1 = 0



(c) Find the heats added to the gas: Q1→2, Q2→3, Q3→4, Q4→1. Your answers should be
numbers multiplied by p0V0.

Answer: Use Q = ∆U −W , so calculate the ∆U ’s first, with U = 3
2
NkT = 3

2
pV for a

monatomic ideal gas.

∆U1→2 = U2 − U1 = 3
2
p2(2V0)− 3

2
(2p0)V0 = 3(2−2/3 − 1)p0V0 = −1.11 p0V0

∆U2→3 = U3 − U2 = 3
2
p3(2V0)− 3

2
p2(2V0) = 3(2−5/3 − 2−2/3)p0V0 = −0.94 p0V0

∆U3→4 = U4 − U3 = 3
2
p0V0 − 3

2
p3(2V0) = 3

2
(1− 2−2/3)p0V0 = 0.56 p0V0

∆U4→1 = U1 − U4 = 3
2
(2p0)V0 − 3

2
p0V0 = 3

2
p0V0 = 1.5 p0V0

Note that the total ∆U adds up to zero, as it should.

Now we subtract the W ’s from before:

Q1→2 = ∆U1→2 −W1→2 = 0

Q2→3 = ∆U2→3 −W2→3 = −0.94 p0V0

Q3→4 = ∆U3→4 −W3→4 = 0

Q4→1 = ∆U4→1 −W4→1 = 1.5 p0V0

(d) Do you notice anything special about the processes 1 → 2 and 3 → 4? Pick one of the
following options for how to realize such a process in the lab, and explain your choice.

(i) Add (or remove) grains of sand to the top of the piston in exactly the right way to
make sure that the pressure varies linearly with volume.

(ii) Heat (or cool) the gas in exactly the right way to make sure that the pressure varies
exponentially with volume.

(iii) Bring the gas into contact with a heat reservoir, and expand or contract it very
slowly, making sure its temperature stays constant.

(iv) Move the piston very quickly, giving the gas no time to have any thermal
energy exchange with its environment. What is special about 1 → 2 and
3 → 4 is that Q = 0 for both. So you don’t want any thermal energy transfer. If
you do things very quickly, there won’t be any time for any heat transfer.

(v) Keep the volume constant while varying the pressure exponentially.

(e) Find the total heat input to this gas in one cycle, Qin. Also find the total heat removed
from the gas, Qout, and the total work done by the gas, Wtot.

Answer: Adding out the total positive heats, Qin = 1.5 p0V0. The negative heats are
the exhaust: Qout = 0.94 p0V0.

The total work done by the gas is the negative of the total work done on the gas:
Wtot = −(3

2
− 3)(1− 2−2/3)p0V0 = 0.56 p0V0.



(f) What is the efficiency of this heat engine? Your answer should be a number.

Answer:

e =
Wtot

Qin

= 1− 2−2/3 = 0.37

2. (40 points) Here is the graph of ln ∆T vs t (with t in seconds) produced by one group
with their data from Lab 8: Cooling.

Part 3: Graphs and Interpretation

* Line of best fit: -1.18x10-3x+4.29
(ln∆T=ln∆T0-t/tau)
Tau = 847.5 seconds or ~14 minutes

This tau value means that it should take ~14 minutes for the aluminum cylinder to
cool by ~63%.

Notice that while the straight line is a good fit, it isn’t perfect. If only conduction and
convection were operating, dQ

dt
= (constants)∆T . If you work out the math, you will get

d(∆T )

dt
= −1

τ
∆T

Whenever you see an equation like this, the solution is an exponential:

∆T = ∆T0 e
−t/τ or ln ∆T = ln ∆T0 −

1

τ
t

which is a straight line graph above. So something else must also be going on: radiation,
perhaps? After all, radiation depends on the difference of the fourth powers of the temperature
of the aluminum cylinder and the temperature of the environment.

We can deal with radiation by using an approximation valid when ∆T is small:

∆(T 4) ≈ 4T 3∆T

(a) To use such an approximation, what must ∆T be small compared to? Explain your
choice.

(i) T . The only one that has the correct units (you can only compare a temperature
to a temperature), and the only one that makes any sense.

(ii) t/∆T0



(iii) τ

(iv) lnT

(v) ln(t/∆T0)

(vi) ln τ

(b) Call the temperature of the aluminum cylinder when it first starts cooling down Tbegin,
and the temperature when you’re just about to stop collecting data, Tend. Follow the
procedure to find the equation for ln ∆T above, but do it for radiation: find τbegin and
τend. Determine whether τbegin > τend, τbegin = τend, or τbegin < τend.

Hint 1: You’ll need Q = mc∆T . But the ∆T in this equation is ∆Tcyl, the change in
temperature of the cylinder, not ∆Tenv, the difference between the cylinder and environ-
ment temperatures. Fortunately, as long as the environment doesn’t change, their rates
of change are the same: d(∆Tcyl)/dt = d(∆Tenv)/dt.

Hint 2: Say A is a constant, while B is a quantity that changes in time. Then, the rate
of change d(AB)/dt = AdB/dt.

Answer: There is radiation absorbed from the environment (gain), and radiation
emitted away from the aluminum cylinder (loss). The total heat transfer rate to the
cylinder is

dQ

dt
= eσA(T 4

environment − T 4
cylinder) = −eσA∆(T 4) ≈ −4T 3eσA∆T

Notice that the only thing here that is different is the T 3 factor. We then use Q =
mc∆Tcyl:

dQ

dt
= mc

d(∆Tcyl)

dt
= mc

d(∆T )

dt
Putting them all together, we have

d(∆T )

dt
= −

(
4T 3eσA

mc

)
∆T

The quantity in brackets is 1/τ :

τ =
mc

4T 3eσA
⇒ τbegin =

mc

4T 3
begineσA

and τend =
mc

4T 3
endeσA

Since Tbegin > Tend, and everything else is the same, τbegin < τend.

(c) Given your answer to (b), give an argument for whether the deviation from linearity seen
in the graph of the experimental data is consistent or inconsistent with radiation being
a noticeable component of the heat transfer from the aluminum cylinder.

Answer: A small τ corresponds to a steep negative slope on the graph of the Lab 8
data: the cooling is rapid. Since τbegin < τend, that means the contribution of radiation



to the initial cooling is strong, and this contribution diminishes as the cylinder becomes
colder. So due to radiation, we should see more rapid cooling at the beginning, and a
more steeply negative slope on the ln ∆T vs t graph, and as time passes, the slope should
become less steeply negative. That is exactly what the graph shows.


