
Solutions to Assignment 1; Phys 186

1. (30 points) You have a 0.32 kg object attached to two identical springs,
each with spring constant 10.0 N/m, at each end as shown in the diagram.
The mass oscillates back and forth horizontally on a frictionless surface.
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(a) Using the axes given, draw a graph of the total force on the mass Fx vs.
the displacement from equilibrium x. Take care to indicate the force
direction with appropriately positive or negative quantities. Write in
the appropriate numbers on the tick marks on the Fx axis on your
graph.
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(b) The oscillations of a single spring have an angular frequency ω =√
k/m. What is the angular frequency for the oscillations of this double

spring setup? Explain.

Answer: From the graph you can see that this setup is equivalent



to a single spring with an effective spring constant 2k = 20.0 N/m.
Therefore

ω =

√
2k

m
= 7.91 Hz

2. (30 points) You’re given a spring, a known mass m0, and an unknown
mass m1. The only measuring device you have is a stopwatch. Describe an
experiment you would design in order to determine m1. Provide an equation
that expresses m1 in terms of m0 and quantities you can measure with your
stopwatch.

Answer: With a stopwatch, the only thing about the spiring-and-mass
systems we can measure is the periods.

The period of oscillations will depend on the mass. So we first measure
the period T0 for oscillations with the known mass. (To reduce error, we
probably should measure how long N ≥ 100 oscillations take, and find the
period by dividing the reading on the stopwatch by N .) We use the same
procedure to measure T1. Then, notice that the period is

T =
2π

ω
= 2π

√
m/k

Therefore, k will cancel out if we take the ratio of the two periods:

T1

T0

=

√
m1

m2

⇒ m1 =
(
T1

T0

)2

m0

3. (20 points) We characterize waves by their frequency, wavelength, and
amplitude. Audible sound has a frequency range of 20 Hz to 20 kHz, wave-
lengths between 1.7 cm and 17 m, and a minimum intensity of 10−12 W/m2.
Ultrasound can be used for medical imaging, where it can resolve structures
with sizes considerably less than 1 cm. The “ultra” in ultrasound must there-
fore refer to higher than audible frequency, wavelength, or amplitude—which
one? Explain. For the range of values in question, you can take the speed of
sound to be constant.

Answer: Since medical imaging should see detail with sizes less than 1 cm,
we need sound with wavelengths less than audible wavelengths which start



at 1.7 cm. Since v = λf , and v is constant, that means that wavelength
and frequency are inversely related. So smaller than audible wavelengths
corresponds to higher than audible frequency. Amplitude is irrelevant.

4. (20 points) You have a radio beacon set up in outer space, broadcasting
with equal and constant power in all directions.

(a) Qualitatively sketch the following graphs of the broadcast waves’ inten-
sity, amplitude, frequency, and wave speed vs. the distance r from the
beacon.

(b) Give the r-dependence of all four variables. The answer for each should
be one of r2, r1, r0 (constant), r−1, or r−2. (Note: the symbol “∝”
means “proportional to.”)

Answer:
I ∝ r−2

A ∝ r−1 since I ∝ A2

f ∝ r0

v ∝ r0

with corresponding graphs.

Extra Problems (not graded)

5. (0 points) You have a mass m attached to a frictionless spring with
spring constant k, and you set the mass oscillating. In the following list
of variables that might describe the resulting motion, draw a circle around
those that depend on the mass m:

amplitude, wavelength, period, phase, diffraction



Sketch a graph of this dependence (with m on the horizontal axis) for each
variable you circle.

Answer: The amplitude and phase have to do with initial conditions;
they do not depend on the mass. Oscillations are not waves; they have no
wavelength. Diffraction also applies to waves only.

The period is T = 2π
√
m/k, therefore T ∝

√
m. The graph should show

a square root dependence.

6. (0 points)

(a) Imagine you hung masses from the end of an ideal spring, with zero
mass and no limits on extension or compression without deformation.
The spring constant is k = 10.0 N/m. You use masses m varying
between 0.00 kg and 1.00 kg, and set each mass oscillating, measuring
the period T of the resulting motion. What would your predicted
graph for the square of the period (T 2) versus mass (m) look like? Put
in appropriate numbers on the axes.
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Answer: Since T = 2π
√
m/k, its square goes like

T 2 =

(
4π2

k

)
m = (3.95 s2/kg)m

This is a linear dependence, with a line going through the origin.



(b) You now get a real spring, and make the following measurements of
period for different masses. Make the graph and find k. (Hint: Use the
slope.)

m (kg) T (s) T 2 (s2)

0.00 0.99 0.98
0.25 1.49 2.22
0.50 1.86 3.46
0.75 2.17 4.71
1.00 2.43 5.90
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Answer: The slope of the graph is 4π2/k. Therefore, figuring out
the slope and solving for k, we get 8.0 N/m.

(c) From your graphs, what is the difference between the behavior of the
real and ideal springs? Which of the following equations, with an ex-
tra parameter ξ, do you think best describes the real spring’s period?
(Hint: ξ = 0 for an ideal spring, ξ ̸= 0 for a real spring.)

T = 2π

√
m+ ξ

k

Answer: This is the only equation that gives T 2 ̸= 0 when m = 0.
The difference between the real and ideal springs is that the real spring
graph does not go through the origin—at m = 0, with no extra masses
hanging, the real spring still behaves as if there is some mass hanging
on it.

(d) What property of the real spring, ignored in an ideal spring, do you
think gives rise to the parameter ξ ̸= 0? Explain your reasoning.



Answer: The extra mass is due to the mass of the spring itself, which
is neglected for an ideal spring.


