
Homework Solutions 2 (Griffiths Chapter 2)

17 With l the length of a cylindrical Gaussian surface, for s < a,

E(2πsl) =
1

ǫ0
πs2lρ ⇒ E =

ρs

2ǫ0

For b > s > a,

E(2πsl) =
1

ǫ0
πa2lρ ⇒ E =

ρa2

2sǫ0

For s > b,
E(2πsl) = 0 ⇒ E = 0

The direction of E is ŝ in all cases.

22 With Gauss’s law, the electric field is, for r < R,

E(4πr2) =
1

ǫ0

4

3
πr3

q
4

3
πR3

⇒ E =
q

4πǫ0

r

R3
r̂

For r ≥ R,

E(4πr2) =
1

ǫ0
q ⇒ E =

q

4πǫ0

1

r2
r̂

The potential is then, for r ≥ R, the point particle result of V (r) = 1/4πǫ0r.
Inside, with r < R, there’s an extra integral:

V (r) =
q

4πǫ0R
− q

4πǫ0R3

∫ r

R

dr′ r′ =
q

8πǫ0R

(

3− r2

R2

)

The gradient outside gives the same result as the point particle; inside, we
have

−∂V

∂r
r̂ =

q

4πǫ0

r

R3
r̂

as it should be.

29 Proceed as in example 2.8, positioning the point where we will calculate
V on the z-axis. Since the charge density is constant,

V (r) =
1

4πǫ0

∫

dv′
ρ(r′)

|r− r′| =
ρ

4πǫ0

∫

dv′
1

|r− r′|
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with |r− r′| = r′2 + z2 − 2r′z cos θ′. Continuing,

V (r) =
ρ

4πǫ0
2π

∫ π

0

dθ′ sin θ′
∫ R

0

dr′ r′2
1

r′2 + z2 − 2r′z cos θ′

=
ρ

2ǫ0

∫ R

0

dr′ r′2
[

1

r′z

√
r′2 + z2 − 2r′z cos θ′

]π

0

=
ρ

2ǫ0z

∫ R

0

dr′ r′
[

√

(r′ + z)2 −
√

(r′ − z)2
]

For z > R,
√

(r′ − z)2 = z − r′, and therefore

V (r) =
ρ

2ǫ0z

∫ R

0

dr′ r′ [r′ + z + r′ − z] =
ρR3

3ǫ0z
=

q

4πǫ0r

as expected.
Inside, we need to split the integral into two: from 0 to z, where

√

(r′ − z)2 = z − r′, and from z to R, where
√

(r′ − z)2 = r′ − z:

V (r) =
ρ

2ǫ0z

[
∫ z

0

dr′ r′ [r′ + z + r′ − z] +

∫ R

z

dr′ r′ [r′ + z − r′ + z]

]

=
ρ

2ǫ0z

[

2

3
z3 + (zR2 − z3)

]

=
ρ

6ǫ0

(

3R2 − z2
)

=
q

8πǫ0R

(

3− r2

R2

)

again, as expected.

39 At r = R, the charge q will be distributed over the surface, so at the
surface σ = q/4πR2. Since for a < r < b, E = 0, the enclosed charge must
be zero, therefore at r = a, σ = −q/4πa2. And since the outer shell started
out electrically neutral, a charge q must be distributed at r = b: σ = q/4πb2.

Using Gauss’s law, E = q/4πǫ0r
2 for r > b and R < r < a. Therefore, at

the center,

V = − q

4πǫ0

(
∫ b

∞

dr
1

r2
+

∫ R

a

dr
1

r2

)

=
q

4πǫ0

(

1

b
− 1

a
+

1

R

)

When V is set to zero on the shell, the electric field outside also becomes
zero. Therefore, since E⊥ = 0 at r = b, σ = 0 at r = b. To keep E = 0 in the
interior of the shell, the charge density remains σ = −q/4πa2 at r = a. And
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since no charge has been drained from the sphere at the center, σ = q/4πR2

at r = R. The voltage at the center will become

V = − q

4πǫ0

(
∫ R

a

dr
1

r2

)

=
q

4πǫ0

(

−1

a
+

1

R

)

44 Using a cylinder with length l as a Gaussian surface, and with a charge
Q over a length l on the inner cable,

(2πsl)E =
Q

ǫ0
⇒ E =

Q/l

2πǫ0s
ŝ

The potential difference between the cables is

V =

∫ b

a

dsE =
Q/l

2πǫ0

∫ b

a

ds

s
=

1

2πǫ0
(Q/l) ln

b

a

Therefore, the capacitance per length is

C

l
=

Q/l

V
=

2πǫ0

ln b
a

55

(a) Generalizing to a charge distribution ρ is straightforward, since E re-
mains linear in q and superposition holds: for multiple charges, we add
their electric fields together. A general ρ is also a sum of point charges:
ρ(r) =

∫

dv′ ρ(r′)δ3(r− r′). Therefore

E(r) =

∫

dv′ ρ(r′)
1

4πǫ0

1

|r− r′|2
(

1 +
|r− r′|

λ

)

e−|r−r
′|/λ r− r′

|r− r′|

(b) Since a point charge E is radially outward, ∇×E = 0. The general E
was a sum of point charge fields, so its curl must still be zero. Therefore,
there must be a scalar potential such that E = −∇V .

(c) Doing the integral (changing variables to x = r/λ will help):

V (r) =
q

4πǫ0

∫ ∞

r

dr′
1

r′2

(

1 +
r

λ

)

e−r/λ =
q

4πǫ0

e−r/λ

r
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(d) We have, with a spherical volume,

∮

∂V

da · E =
q

4πǫ0

[

1

R2

(

1 +
R

λ

)

e−R/λ

]

4πR2 =
q

ǫ0

[(

1 +
R

λ

)

e−R/λ

]

The voltage integral is

1

λ2

∫

V

dv V =
1

λ2

q

4πǫ0

∫

dΩ

∫ R

0

dr r2
e−r/λ

r
=

q

ǫ0

[

1−
(

1 +
R

λ

)

e−R/λ

]

Adding these, we get q/ǫ0.

(e) The result generalizes, again because E remains linear in q and super-
position holds; ρ(r) =

∫

dv′ ρ(r′)δ3(r− r′).

(f) The bottom of the triangle is still E = −∇V ; V = −
∫

dl · E.
On the right, we have the result of (a), ∇×E = 0, and the differential
form of (e):

∇ · E+
V

λ2
=

ρ

ǫ0

On the left, we have

−∇
2V +

V

λ2
=

ρ

ǫ0
and V =

1

4πǫ0

∫

dv′
ρ(r′)e−|r−r

′|/λ

|r− r′|

(g) In the result of (e), we can see that when E = 0, the V -integral remains
the same. Since V = −

∫

dl · E, V is a constant inside the conductor.
Therefore, the V -integral is proportional to the volume, and therefore
so must Qenc be. This means a constant charge density ρ.

Phys 486 HW#2 Solutions 4


