
Solutions to Assignment 7; Phys 186

1. (30 points) An important discovery in the 1980s was the W+ and W−,
which are among the particles responsible for the weak nuclear force. W+

and W− are antiparticles of each other, and they each have a rest mass of
80.4 GeV/c2. Say you want to create a W+ and W− pair by a head-on
collision of an electron and a positron (e− and e+) into each other at speeds
close to the speed of light. The rest mass of an electron (and a positron, its
antiparticle) is 0.511 MeV/c2. (Remember: 1 GeV = 1000 MeV.)

(a) As observed from the lab frame of reference, the e− and e+ head toward
each other with equal and opposite velocities in the collision. What is
the minimum time dilation factor γ that the e− and e+ must have in
order to produce enough energy to create a W+ and W− pair at rest?

Answer: Energy conservation means that

2mW c2 = 2γmec
2 ⇒ γ =

mW

me

= 1.57× 105

This is an enormous γ; the speed of the electron must be almost c.

(b) Say that in the lab frame of reference, the electron traveled 30.0 km at
a constant speed corresponding to the γ you calculated in (a). How far
did it travel in its own frame of reference?

Answer: In the lab frame, the 30.0 km distance is at rest; therefore,
the proper length ∆x0 = 30.0 km. This distance in the electron’s frame
is contracted, as it is moving: the endpoint of the electron’s flight is
rushing at very high speed toward the stationary electron. Length
contraction: ∆x = ∆x0/γ, therefore

∆x =
3× 104 m

1.57× 105
= 0.191 m



(c) Calculate how long it took for the electron to travel 30.0 km in the lab
frame of reference. Then calculate how long this time interval was in
the electrons own frame of reference.

Answer: The speed is almost c. Therefore, to travel 30 km,

∆t =
∆x0

c
=

3× 104 m

3× 108 m/s
= 10−4 s

Note that this is not the proper time: in the lab frame, the beginning
and end of the electron’s flight do not take place at the same location.
In the electron’s frame, however, since the endpoint is rushing toward
a stationary electron, the beginning and ending events happen at the
same location. So the electron will have the proper time,

∆t0 =
∆t

γ
=

∆x

c
= 6.37× 10−10 s

2. (40 points) Say you’re doing the lab where you accelerated and shot a
beam of electrons onto a screen. The mass of an electron is me = 511 keV/c2.

(a) You accelerated the electrons through a voltage difference of up to 5.00
kV on your dial. At Va = 5.00 kV, then, what is the kinetic energy
of the electrons in the beam, in units of keV? Hint: 1 eV is literally
the electron charge magnitude e multiplied by 1 V. Therefore, you
shouldn’t need any real calculation to get this answer.

Answer: e(5 kV) = 5 keV.

(b) What fraction of the speed of light are these electrons traveling? Use
1

2
mev

2 for your kinetic energy, as in your homework and the lab.

Answer: The usual energy conservation gives

5 keV =
1

2
(511 keV)

v2

c2
⇒

v

c
=

√

2 · 5

511
= 0.140

14% of the speed of light. I mentioned that our electrons in the lab
were fast.



(c) Recalculate the fraction of the speed of light the electron has, using a
more appropriate expression for kinetic energy.

Answer: A more accurate calculation of the speed would go like
this. The total energy of the electron is γmec

2, while the energy of an
electron at rest, where γ = 1, is mec

2. Therefore, the kinetic energy,
which is the additional energy an object has due its motion, must be
the difference: K = (γ − 1)mec

2. We can use this relativistic form
of kinetic energy to recalculate the fraction of the speed of light the
electron has.

Here, γ depends on v/c, so after some algebra,

v

c
=

√

√

√

√

√

1−
1

(

1 + K
mec2

)2
= 0.139

Again, 14% of the speed of light.

(d) Compare your results in (b) and (c). Do you think relativity was im-
portant enough to account for in your lab?

Answer: The answers are very similar; you did not need relativity.
While very fast, the electrons are not close enough to the speed of light
for relativistic effects to become important.

(e) Say you got a lot more expensive equipment that could provide an
accelerating voltage of up to Va = 500 kV. In that case, what would
you calculate the speed of the electrons to be (as a fraction of the speed
of light) if you used K = 1

2
mev

2?

Answer: Same calculation:

500 keV =
1

2
(511 keV)

v2

c2
⇒

v

c
=

√

2 · 500

511
= 1.40

140% of the speed of light. That should raise an eyebrow.



(f) Redo the calculation for v as a fraction of the speed of light with Va =
500 kV, but now using the correct expression for kinetic energy.

Answer: Same calculation:

v

c
=

√

√

√

√

√

1−
1

(

1 + K
mec2

)2
= 0.863

86% of the speed of light.

(g) Compare your results with different expressions for kinetic energy in
(e) and (f) and interpret what they mean.

Answer: Clearly the nonrelativistic calculation is wrong: faster than
light? The electrons are now moving close enough to the speed of light
that relativity becomes important, and the proper relativistic kinetic
energy expression is necessary.

(h) Again, Va = 500 kV. In the lab reference frame, the copper coils with
the current providing the magnetic field were circles with a radius of
about R = 6.8 cm. Sketch how the coils look in the electrons’ reference
frame, and calculate the appropriate dimensions (height, width) for the
coil in that frame.

Answer: Here, γ = 1.98. The coil is not moving in the lab frame,
therefore its dimensions are proper lengths. Length contraction will
occur along the direction of motion, so the width will contract down to
2 · 6.8/1.98 = 6.9 cm. The height is perpendicular to the direction of
motion, so this will not be contracted, remaining at 2 · 6.8 = 13.6 cm.
The circle will now look like an ellipse.

3. (30 points) Say you’re observing light from a distant star. But the star
is moving relative to Earth: it is moving directly away from Earth with speed
v. Now, light is an electromagnetic wave. In the Earth frame of reference,
the waves have period TE: the star emits wavefronts once every TE. Since
the star is moving away, on Earth, you won’t observe the same time interval
TE between wavefronts.



(a) In the Earth frame, during the time interval TE it takes between emit-
ting wavefronts, how much further will the star have moved away from
the Earth?

Answer: With speed v, the distance covered in time TE is d = TEv.

(b) How much extra time will the next wavefront take to reach the Earth?

Answer: With an extra distance d and a wave traveling at speed c,
the extra time is d/c = TEv/c.

(c) The period you you actually observe, To, will be TE plus the extra time
you calculated for the wavefront. What is this observed period?

Answer: To = TE + TEv/c = TE(1 + v/c).

(d) Now, remember that TE was in the Earth frame of reference. What is
Ts, the time between wavefront emissions, in the frame of the star (the
source)?

Answer: Ts is the proper time, since the wavefront emission events all
happen at the same location in the star’s frame of reference. Therefore

TE = γTs =
Ts

√

1−
(

v
c

)2
or Ts = TE

√

1−
(

v

c

)2

(e) Put everything together: find an equation for To in terms of Ts and
v/c. (If you want to simplify your expression, note that (1 − a2) =
(1 + a)(1− a).)

Answer:

To =
Ts

√

1−
(

v
c

)2

(

1 +
v

c

)

= Ts

1 + v
c

√

(

1 + v
c

) (

1− v
c

)

= Ts

√

√

√

√

1 + v
c

1− v
c



(f) Check your equation. What does it give you when v = 0? Is this
reasonable? What about when v = c? Is that what you’d expect—if
the source is moving away from you at v = c, would you see any waves?

Answer: When v = 0, To = Ts—since the star and the Earth are in
the same reference frame (at rest relative to each other), the periods
should be the same. When v → c, To → ∞. You don’t see any wave,
as there is an infinite delay between wavefronts. Well, that’s what will
happen if the wave source is receding from you at the same speed as
the wave.

(g) Let’s say that since you know the physics of stars, you know that the
star you’re observing should be emitting blue light with a wavelength
of 450 nm. But what you actually see is red light with a wavelength of
700 nm. What, then, is v/c, the fraction of the speed of light the star
is moving away from Earth?

Answer: Since wave speed is λf and f = 1/T , the period of the light
wave is T = λ/c. The ratio

To

Ts

=
λo/c

λs/c
=

λo

λs

But that ratio is also in the previous answer:

To

Ts

=
λo

λs

=

√

√

√

√

1 + v
c

1− v
c

The wavelength ratio r = λo/λs = 700/450. We need to solve for v/c.
Squaring both sides,

r2 =
1 + v

c

1− v
c

⇒
v

c
=

r2 − 1

r2 + 1
= 0.415

This is the famous redshift of light from stars and galaxies receding
away from us.



Extra Problems (not graded)

4. (0 points) A cosmic ray collision creates a muon (a subatomic particle)
near the top of the troposphere, at an altitude of 9000 m. The muon heads
straight towards the surface at a speed of 0.998c.

(a) In the reference frame of a ground observer, what is the muon’s initial
distance to the surface? What is the time the muon takes to reach the
surface?

Answer: In this reference frame you measure ∆x0, which is 9000
m. The time to the surface is (9000 m)/(0.998c) = 3.01 × 10−5 s.
There is no relativity involves, since we do not switch between frames of
reference: the question entirely concerns the ground frame if reference.
So no γ factors are involved.

This time interval is ∆t, a dilated time. Since in the ground frame,
the creation of the muon and its reaching the surface take place at
different locations (9000 m high and 0 m high), this is not the proper
time. However, since the troposphere and the surface are stationary in
the ground frame, the proper length ∆x = 9000 m is in this frame.

(b) In the reference frame of the muon, what is the muon’s initial distance
to the surface? What is the time the muon takes to reach the surface?

Answer: In the muon’s frame of reference, the ground is rushing up to
meet the muon: the beginning and ending locations are not stationary.
Therefore the length (height) in the muon’s frame will be contracted:
∆x = ∆x0/γ. The time dilation factor γ = 1/

√
1− 0.9982 = 15.8.

So ∆x = 569 m. In this reference frame the ground is rushing up at
v = 0.998c. The time it takes to meet it is ∆x/v = 1.9× 10−6 s. This
is ∆t0, since the beginning and end events (muon being created and
muon reaching the ground) happen at the same location: exactly where
the muon is.

(c) When measured at rest in the lab, the average lifetime of a muon is
2.2×10−6 s. Given your answers to (a) and (b), would an average muon



make it to the surface, or does it have to be an exceptionally long-lived
one? Explain.

Answer: The muon’s frame of reference is where the muon is sta-
tionary, as in the lab experiments that established the average lifetime.
Therefore we should compare ∆t0 we just calculated to the lifetime.
Since 1.9 × 10−6 < 2.2 × 10−6, the average muon has enough time to
make it to the surface.

5. (0 points) You have a proton and an antiproton at rest on Earth. They
annihilate to produce a muon-antimuon pair: p + p̄ → µ− + µ+. The muon
heads toward the Moon, 3.8 × 108 m away, and the antimuon is captured
by a detector here on Earth. The typical lifetime of a muon is 2.2 × 10−6

s. Will the muon make it to the Moon to be captured by a detector there?
A muon’s mass is mµ = 1.9 × 10−28 kg, or 110 MeV/c2. A proton’s mass is
mp = 1.7 × 10−27 kg or 940 MeV/c2. The speed of light is 3.0 × 108 m/s.
Note:

• Relativistic energy (γmc2) and momentum (γm~v) are both conserved
in this reaction. Show how you use both.

• You’ll get a bonus +5 points if you solve this using the masses given
in MeV/c2.

Answer: The masses of particles and their antiparticles are identical.
Therefore, with the proton and antiproton starting from rest, momentum
conservation looks like

0 = γµ−mµ~vµ− + γµ+mµ~vµ+

This implies the velocities of the muon and antimuon are equal and opposite,
and that therefore γµ− = γµ+ .

Energy conservation then gives, with γp = γp̄ = 1 because they are at
rest,

2mpc
2 = 2γµmµc

2 ⇒ γµ =
mp

mµ

= 8.6

This is a large γ, which implies the speed of the muon v ≈ c. In the frame
of reference of an observer on Earth, the muon’s lifetime will increase due to



time dilation; it will live for ∆t = γµ(2.2 × 10−6 s). During this time it will
travel close to the speed of light, covering the proper distance

∆x0 = cγµ(2.2× 10−6 s) = 5.6× 103 m < 3.8× 108 m

The muon will fall far short of the Moon.


