
Solutions to Assignment 9; Phys 186

1. (30 points) Let’s do half-lives.

(a) You have friend who is not a science major. She tells you that quan-
tum mechanical events cannot be truly random. After all, randomness
implies unpredictability, but physicists make precise predictions using
quantum mechanics. Given the half-life, they can tell you exactly what
amount of a radioactive sample will remain after a certain time. Given
the energy of photons emitted from a light source, they can calculate
the interference pattern observed when a diffraction grating is placed
between the source and a screen. Correct your friends’ misconceptions
and explain what the role of randomness in quantum mechanics is.

Answer: Individual quantum events are random. We cannot predict
when an individual nucleus will decay, or the exact path any single
photon will take. But precisely because individual events are random,
if lots and lots of individual random events take place, a very reliable
statistical pattern will emerge. We get very definite half-lives and in-
terference patterns when the number of events is about in the 1020’s.

(b) You have a 10.0 kg block of radioactive material A, and at time t = 0,
you start with all 10 kg being pure A. Sketch a graph of the amount
of A that remains in the block over time. The half-life of A nuclei is
5.0 days. Answer:
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(And connect the dots.)

(c) Pick, from among the following, the correct expression for the amount
of A remaining over time. Here τ = t1/2/ ln 2, and m0 = 10 kg.

(a) m = m0 cos
t
τ

(b) m = m0

(

1− t
τ

)

(c) m = m0 ln
t
τ

(d) m = m0 e
−

t
τ

(e) m = m0√
1−( t

τ
)2

(d) What is m at t = 9.0 days?

Answer: m = 10 e−(9 ln 2)/5 = 2.9 kg

2. (20 points) There have been occasional concerns that people living close
to electric power lines might have high risks of cancer due to their proximity
to electromagnetic radiation emitted by the power lines. Determine, using
a simple calculation, whether this concern is warranted. I will supply any
physical data that you need—just ask me. I’m interested in whether you
know to ask the right questions about the numbers that you might need.

Answer: Power lines carry alternating current, with a frequency of 60 Hz.
That means accelerating electric charges with a 60 Hz frequency, producing



predominantly 60 Hz electromagnetic waves. Photons with this frequency
have an energy of

E = hf = 4.0× 10−32 J = 2.5× 10−13 eV

Chemical bond energies are of the order of eV’s. So the photons produced
by power lines have energies that are extremely smaller than bond energies.
Therefore they cannot disrupt biologically important molecules such as DNA,
and therefore it is hard to see any physical mechanism for their causing
cancer.

3. (30 points) Recall the experiment we did in the lab, where we produced
an electron beam and bent its trajectory by using electric and magnetic fields.

(a) Say you measure the momentum of one of the electrons, finding that it
is exactly p = p0. Now, if you really have learned the exact momentum
of an electron, this must mean that if you instantaneously re-measure
the momentum of the electron, not giving it any time to change after
the first measurement, you must be guaranteed to get the same result
p = p0. Therefore, immediately after the measurement, you should
know the probability distributions P (p) and P (x) associated with that
electron. Sketch these probability distributions:

Answer: Being guaranteed to obtain p = p0 means that the proba-
bility for all p 6= p0 must be zero. Indeed, since we are certain about
the momentum, the standard deviation ∆p = 0. The probability dis-
tribution P (p)must be a zero-width spike. And from the uncertainty
principle, this means that ∆x = ∞: we know nothing about x. This
is indicated by a totally flat probability distribution that makes no
distinction between x values.

✻

✲

P (p)

pp0

✻

✲

P (x)

x

(b) In your lab experiment, say you accelerated the electrons, starting from
rest, by applying a voltage of 6000 V. Find v, the speed of the elec-



trons after their acceleration is complete, in two ways: by using the
nonrelativistic and then relativistic expressions for kinetic energy. Was
it necessary to account for relativity?

Answer: Setting the initial electric potential energy equal to the final
kinetic energy,

eVa =
1
2
mev

2 ⇒ v =

√

2eVa

me

= 4.59× 107 m/s = 0.153c

The relativistic calculation:

eVa = (γ − 1)mec
2 ⇒ γ = 1.0117

But γ depends on v, so that

v

c
=

√

1− 1

γ2
= 0.152 ⇒ v = 4.56× 107 m/s

The answers are almost the same. The error introduced by using the
nonrelativistic kinetic energy is very small; indeed, much smaller than
all the other experimental errors in this lab. (As you saw with your
very inaccurate results for e/me.)

(c) There is a distance L between the point the electrons traveling at v
emerge from the electron gun and when they hit the screen. If L =
0.10m, circle what you think is a good estimate for ∆x, the uncertainty
in the position of the electrons along the direction in which they are
traveling. (Note: h̄ = h/2π.)

L
h̄L

2

h̄

2L

c

L

γc

L

Now write down your estimate for the uncertainty: ∆x = 0.10m.

(d) The electrons are subatomic particles: you have to use quantum me-
chanics. Since ∆x < ∞, this means that ∆p > 0. In other words, you
cannot assume that you know that the electrons are traveling exactly
at the speed v you calculated. Estimate ∆p, assuming that ∆p, your
uncertainty about p, is at its minimum possible value.



Answer: For the minimum,

∆p =
h̄

2∆x
= 5.28× 10−34 kg ·m/s

(e) Physicists usually like their electron beams to be “monochromatic”—
all particles at a single wavelength. If the value of ∆p/p is small, the
beam is close to monochromatic. Calculate the numerical value of p for
your beam of electrons, and then find ∆p/p and decide whether this
beam is almost monochromatic or not.

Answer: The momentum is p = mv = 4.15×10−23 kg·m/s. Therefore

∆p

p
= 1.27× 10−11 ≪ 1

Since this number is so small, the beam is nearly monochromatic.

4. (20 points) The following graphs show F , the magnitude of force, on the
vertical axis, and r, the distance between two protons, on the horizontal axis.
The tick mark on the horizontal r-axis indicates an approximate separation
of 10−15 m. The curve that is the same in in all graphs describes how the
electrical force between the protons depends on r. The curve that is different
represents proposals for how the strong nuclear force between the protons
depends on r.
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Select the graph that shows the correct qualitative behavior for the strong
nuclear force. And then explain—give the reasons for your choice.



Answer: Protons in an atomic nucleus are separated by about 10−15 m.
That means that at such r and smaller, the strong nuclear force must over-
come the electrical repulsion—it must have a larger magnitude. But at larger
than nuclear distances, we notice no effects of the strong force. So at large
distances, it must be considerably weaker than electrical forces. Graph (c)
is the only one that shows this.

Extra Problems (not graded)

5. (0 points) Consider a particle with mass m confined to a 1D box, so
that it is impossible to find the particle outside 0 ≤ x ≤ L. Other than the
confinement, the particle is not interacting with anything, so its energy is
purely kinetic energy. Now say that you have a particle in the lowest energy
level, the ground state, with energy E1 = h2/8mL2. This means that you
can calculate the particle’s momentum:

h2

8mL2
=

1

2
mv2 =

1

2m
(mv)2 =

p2

2m

Solving for p, we get

√

p2 =

√

h2

4L2
⇒ p =

h

2L

But notice that since h and L are known exactly, therefore p is known exactly.
And this means there is no uncertainty in your knowledge of the momentum:
∆p = 0. But since the particle is confined, ∆x ≈ L; in any case, ∆x < ∞.
Therefore

∆x∆p = 0 <
h

4π

The Uncertainty Principle is violated! But this can’t be right. Find the error
in the reasoning above. Some options for you to consider:

• Maybe ∆x = ∞ because the particle can quantum tunnel outside the
box.

• Maybe h is not known exactly, so its uncertainty needs to be taken into
account.



• Maybe ∆p > 0 because there is a subtle mistake in the calculation.

Hint: Remember that momentum is a vector!

Answer: There is a mistake in the calculation.
Physically, if the momentum was p = h/L, it would mean the particle

would be continually moving in the +x direction. But it can’t—it hits the
wall of the box. The argument overlooks the fact that a square root has two
values:

√

h2

L2
= ±h

L

In other words, the particle may also be moving in the −x direction. In fact,
the probabilities of both directions are equal. Since it is not certain whether
the particle has p = +h/L or p = −h/L, the uncertainty ∆p > 0.

6. (0 points) You want to measure the half-life of a radioactive sample. You
first measure the background radiation in your lab: 23 counts per minute.
Then, every day at 12:00 noon, you take a Geiger counter and count the total
number of events with your sample in place for exactly one minute. Call this
activity AT . Here is a table of your data:

t (days) 0 1 2 3 4 5 6 7 8 9 10
AT (counts/minute) 123 111 84 79 70 59 52 49 44 40 38

(a) Make a graph involving AS, the activity due to your sample alone, and
time. Choose two of the following to put on the axes of your graph:

t 2−t log2 t t−2 AS

AS0

2−AS/AS0 log2

(

AS

AS0

) (

AS

AS0

)

−2

AS0 refers to AS at day 0. (Math reminder: 2x = ex ln 2 and log2 x =
ln x/ ln 2.)

Answer: Use t on the horizontal axis and log2
(

AS

AS0

)

on the vertical.



0 123 0

1 111 -0.1844246

2 84 -0.7131189

3 79 -0.8365013

4 70 -1.0892673

5 59 -1.4739312

6 52 -1.7858752

7 49 -1.9434165

8 44 -2.2515388

9 40 -2.5563933

10 38 -2.7369656

y = -0.2791x - 0.0202

R² = 0.9938
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(b) Using the slope of a straight line through your data, calculate the half-
life.

Answer: Since

AS = AS0 2
−t/t1/2 ⇒ log2

(

AS

AS0

)

=

(

− 1

t1/2

)

t

Therefore

t1/2 = − 1

slope
= 3.6 days


