
Homework Solutions 3 (Griffiths Chapter 3)

13 Call (a, b) the location r1. Put image charges −q at (−a, b), (a, b) (loca-
tions r2 and r3) and q at (−a,−b) (location r4). The potential is then

V (r) =
q

4πǫ0

(

1

|r− r1|
− 1

|r− r2|
− 1

|r− r3|
+

1

|r− r4|

)

The force on the real charge is,

F(r) =
q2

4πǫ0

(

− 1

4b2
ŷ − 1

4a2
x̂+

1

[4(a2 + b2)]3/2
(2ax̂+ 2bŷ)

)

The work is, bringing the charge in from infinity along the y = b line,

W = − q2

4πǫ0

∫

∞

a

dx

(

− x− a

[4b2 + (x− a)2]3/2
− 1

(x+ a)2

+
x+ a

[4b2 + (x+ a)2]3/2

)

=
q2

4πǫ0

(

1

2b
+

1

2a
− 1

2
√
a2 + b2

)

If we were able to arrange the charge and image charges into a hexagon,
octagon, and so forth, with alternating signs for the charges, we would also
get V = 0 along planes. So any angle of 360◦/2n = π/n would work, for
n = 1, 2, 3, . . .

17 It’s most convenient to use the hyperbolic solutions for basis functions
along the x-axis:

Vk(x, y) = (Ak sinh kx+Bk cosh kx)(Ck sin ky +Dk cos ky)

Putting in the boundary conditions at x = 0 and y = 0, this means Bk = 0
and Dk = 0. Having V = 0 for y = a requires k = nπ/a. The general
solution giving V = V0(y) at x = b is therefore

V (x, y) =
∞
∑

n=1

An sinh
(nπ

a
x
)

sin
(nπ

a
y
)
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Since

V0(y) =
∞
∑

n=1

An sinh
(nπ

a
b
)

sin
(nπ

a
y
)

this means that An can be found using the orthogonality relationship between
sine functions. Operating on each side with 2

a

∫ a

0
dy sin(mπ

a
y) results in

Am =
2

a sinh
(

mπ
a
b
)

∫ a

0

dy sin
(mπ

a
y
)

V0(y)

When V0(y) = V0,

An =
4V0

π sinh
(

nπ
a
b
)

{

0 n even
1
n

n odd

21 Since the voltage should be finite as r → 0 and r → ∞, the solutions
are

Vin = Al r
l Pl(cos θ) Vout = Bl r

−(l+1) Pl(cos θ)

At r = R, we have, using the orthogonality of Pl functions,

Al =
2l + 1

2Rl

∫ π

0

dθ sin θ Pl(cos θ) k cos 3θ

To do these integrals, notice that

cos 3θ = 4 cos3 θ − 3 cos θ =
8

5
P3(cos θ)−

3

5
P1(cos θ)

Therefore

Al =
k(2l + 1)

2Rl

∫ 1

−1

dxPl(x)

[

8

5
P3(x)−

3

5
P1(x)

]

This integral will be non-zero only for l = 1 and l = 3. We get

A1 = − 3k

5R
A3 =

8k

5R3

The continuity of the potential means Al R
2l+1 = Bl. The continuity of the

normal derivatives gives

σ = −ǫ0

[

∂Vout

∂r
− ∂Vin

∂r

]

r=R

= −ǫ0
[

B1(−2)R−3P1(cos θ)

+B3(−4)R−5P3(cos θ)− A1(1)P1(cos θ)− A3(3)P3(cos θ)
]

=
kǫ0
R

[

56

5
P3(cos θ)−

9

5
P1(cos θ)

]

=
kǫ0
R

(28 cos3 θ − 15 cos θ)
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27 Using the cylindrical basis functions,

V = A0 ln s+B0 +
∞
∑

m=1

(Ams
m +Bms

−m)(Cm cosmφ+Dm sinmφ)

As s → ∞, V → −E0x = −E0s cosφ. Therefore, Am = 0 for m 6= 1,
and A1 = −E0. Also, B0 = 0 and D1 = 0. Since V = 0 at s = R,
Bm = 0 for m 6= 0 as well: we get A1R cosφ + B1R

−1 cosφ = 0. Therefore
B1 = −A1R

2 = E0R
2 and

V = −E0 s cosφ

(

1− R2

s2

)

The surface charge again comes through the normal derivatives:

σ = −ǫ0

[

∂V

∂s

]

s=R

= 2ǫ0E0 cosφ

57 The quadrupole. . .

(a) With P2(x) =
1
2
(3x2 − 1) and cosα = r̂ · r̂′, the quadrupole term is

Vquad =
1

4πǫ0

1

r3

∫

dv′
1

2

[

3(r̂ · r̂′)2 − 1
]

r′2 ρ(r′)

Note, now, that

(r̂ · r̂′)2 =
(

∑

i

r̂ir̂
′

i

)2

=
∑

ij

r̂ir̂
′

ir̂j r̂
′

j =
∑

ij

(r̂ir̂j)(r̂
′

ir̂
′

j) =
∑

ij

(r̂ir̂j)
(r′ir

′

j)

r′2

1 = r̂ · r̂ =
∑

i

r̂ir̂i =
∑

ij

r̂ir̂jδij

Putting these in the integral,

Vquad =
1

4πǫ0

1

r3

∑

ij

r̂ir̂j

∫

dv′
1

2

[

3r′ir
′

j − r′2δij
]

ρ(r′)
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(b) In this case,

ρ(r) = q δ(z)
[

δ(x− a

2
)δ(y − a

2
) + δ(x+

a

2
)δ(y +

a

2
)−

δ(x− a

2
)δ(y +

a

2
)− δ(x+

a

2
)δ(y − a

2
)
]

This means that all z-components—all Qij where i = 3 or j = 3—are
zero. All diagonal components with i = j also turn out to be zero,
because of the opposite sign charges. Also notice that the quadrupole
moment is symmetric: Qij = Qji. So we’re left with the non-zero
components

Q12 = Q21 =

∫

dv′
3

2
x′y′ρ(r′) =

3

2
qa2

(c) When we shift the origin, r′ → r′ − a. Therefore, r′i → r′i − ai and

r′ir
′

j → r′ir
′

j−air
′

j−ajr
′

i+aiaj r′2 →
∑

i

(r′i−ai)
2 =

∑

i

(r′2i r−2air
′

i+a2i )

Notice that all the terms added to the integral are either constants or
linear in r′i. The constant terms give contributions proportional to

∫

dv′ ρ(r′) = Q = 0

The linear terms give contributions proportional to
∫

dv′ r′i ρ(r
′) = pi = 0

Therefore the result is independent of the origin.

(d) Now, the octopole. We need P3(x) =
1
2
(5x3 − 3x). Then,

(r̂ · r̂′)3 =
(

∑

i

r̂ir̂
′

i

)3

=
∑

ijk

(r̂ir̂j r̂k)(r̂
′

ir̂
′

j r̂
′

k) =
∑

ijk

(r̂ir̂j r̂k)
(r′ir

′

jr
′

k)

r′3

r̂ · r̂′ =
∑

i

r̂ir̂
′

i =
∑

i

r̂ir̂
′

i

(

∑

jk

r̂j r̂kδjk

)

=
∑

ijk

(r̂ir̂j r̂k)
(r′iδjk)

r′
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We then define

Voct =
1

4πǫ0

1

r4

∑

ijk

r̂ir̂j r̂k Oijk

where

Oijk =

∫

dv′
1

2

[

5r′ir
′

jr
′

k − 3r′2r′iδjk
]

ρ(r′)
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