
Homework Solutions 9 (Griffiths Chapter 9)

17 Use equations (9.101) with (Ẽ0I )x,z = 0. Item (i) gives 0 = 0. Using
Snell’s law, (ii) results in:

1

v1

(

Ẽ0I + Ẽ0R

)

sin θI =
1

v2
Ẽ0T sin θT ⇒ Ẽ0I + Ẽ0R = Ẽ0T

That’s also what is given by (iii), so that was redundant. Then, (iv) gives:

1

µ1v1

(

−Ẽ0I + Ẽ0R

)

cos θI = −
1

µ2v2
Ẽ0T cos θT ⇒ Ẽ0I − Ẽ0R = αβẼ0T

Adding and then subtracting the two equations, we get Fresnel’s equations:

Ẽ0T =
2

1 + αβ
Ẽ0I Ẽ0R =

1− αβ

1 + αβ
Ẽ0I

Now, to draw the graph,

αβ =

√

β2 − sin2 θI
cos2 θI

The upward curving line is Ẽ0R/Ẽ0I ; note that since αβ > 1 for 0 < θI < π/2,
the real amplitude ratio is the absolute value.

There is no Brewster’s angle where Ẽ0R = 0. For αβ = 1, we need

1−

(

v1
v2

)2

sin2 θ =

(

µ2v2
µ1v1

)2

cos2 θ
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For most media, µ1 ≈ µ2, so we get 1 ≈ (v2/v1)
2, but that just means there

is no true interface.
α = 1 at normal incidence, so

Ẽ0T =
2

1 + β
Ẽ0I Ẽ0R =

1− β

1 + β
Ẽ0I

which are the same as equation (9.82).
The reflection and transmission coefficients are

R =

(

1− αβ

1 + αβ

)2

T =
ϵ2v2
ϵ1v1

(

2

1 + αβ

)2
cos θT
cos θI

= αβ

(

2

1 + αβ

)2

R + T =
(1− 2αβ + α2β2) + 4αβ

(1 + αβ)2
=

(1 + 2αβ + α2β2)

(1 + αβ)2
= 1

32 For TM, we want Bz = 0 and Ez = X(x)Y (y). The boundary conditions
require that E∥ = 0, and therefore Ez = 0 when x = 0, x = a, y = 0, y = a.
We have

X(x) = A sin kxx+B cos kxx Y (y) = C sin kyy +D cos kyy

With the boundary conditions, B = D = 0, and we end up with

Ex = E0 sin
(mπx

a

)

sin
(nπy

b

)

m,n = 1, 2, 3, . . .

The cutoff frequencies, and the wave and group velocity results are exactly
the same as with TE modes. But because now m and n start from 1, not
0, the lowest TM mode is TM11, while with TE it’s TE10. Therefore the
frequency ratio is

ω11

ω10

=
cπ

√

1
a2

+ 1
b2

cπ
√

1
a2

=

√

1 +
a2

b2

37 Spherical waves, involving j1(kr − ωt).

(a) Since only Eφ ̸= 0, and that doesn’t depend on ϕ,

∇ · E =
1

r sin θ

∂

∂ϕ
Eφ = 0
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Then the curl:

∇× E =
1

r sin θ

∂

∂θ
(sin θEφ)r̂−

1

r

∂

∂r
(rEφ)θ̂

=
2A cos θ

r2

(

cosu−
sin u

kr

)

r̂−
A sin θ

r

(

−k sin u+
sin u

kr2
−

cosu

r

)

θ̂

Next,

∇× E = −
∂

∂t
B ⇒ B =

∫ t

dt∇× E

B =
2A cos θ

ωr2

(

sin u+
cosu

kr

)

r̂+
A sin θ

ωr

(

−k cosu+
cosu

kr2
+

sin u

r

)

θ̂

We now need to check the remaining Maxwell’s equations with this B:

∇ ·B =
1

r2
∂

∂r

(

r2Br

)

+
1

r sin θ

∂

∂θ
(sin θ Bθ) = 0

And then,

∇×B =
1

r

(

∂

∂r
(rBθ)−

∂

∂θ
Br

)

φ̂ =
A sin θ

cr

(

k sin u+
cosu

r

)

φ̂

which is the same as

µ0ϵ0
∂

∂t
E =

A sin θ

cr

(

k sin u+
cosu

r

)

φ̂

(b) Just grinding through the algebra, the ugly result is

S =
1

µ0

E×B

=
A2 sin θ

µ0ωr2

{

2 cos θ

r

[(

1−
1

k2r2

)

sin u cosu+
1

kr

(

cos2 u− sin2 u
)

]

θ̂

+sin θ

[(

−
2

r
+

1

k2r3

)

sin u cosu+ k cos2 u+
1

kr2
(

sin2 u− cos2 u
)

]

r̂

}

Averaging, we have ⟨cos2 u⟩ = ⟨sin2 u⟩ = 1
2
and ⟨sin u cosu⟩ = 0.

I = ⟨S⟩ =
A2 sin2 θ

2µ0c

1

r2
r̂

That’s the correct direction and r-dependence for a spherical wave.
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(c) Total power radiated:
∫

da · I =
A2

2µ0c

∫

r2dr sin θ dθdϕ
sin2 θ

r2
=

4πA2

3µ0c

41 Total internal reflection:

(a) We have ẼT = Ẽ0T e
i(kT ·r−ωt). Then,

kT ·r = kT (x sin θT +z cos θT ) = kx+iκz ⇒ ẼT = Ẽ0T e
−κzei(kx−ωt)

(b) With complex α, β,

R =

∣

∣

∣

∣

∣

Ẽ0R

Ẽ0I

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

α− β

α + β

∣

∣

∣

∣

2

In our case β is real, but α is imaginary: α = i|α|. Therefore, if
β + i|α| = Z, then

R =

∣

∣

∣

∣

−Z∗

Z

∣

∣

∣

∣

2

= 1

since that is true for any complex number.

(c) The other polarization, and again with β real and α imaginary:

R =

∣

∣

∣

∣

1− αβ

1 + αβ

∣

∣

∣

∣

2

= 1

(d) Using the solutions to 9.17 and (a) here, the real part of ẼT is

E = E0e
−κz cos(kx− ωt+ δ) ŷ

It seems Griffiths wants us to choose the phase δ = 0. We’ll do so. The
complex magnetic field is

B̃ =
1

v2
Ẽ0T e

−κzei(kx−ωt)

(

−i
cκ

ωn2

x̂+
ck

ωn2

ẑ

)

Its real part is

B =
cE0

v2ωn2

Re {[cos(kx− ωt) + i sin(kx− ωt)] [−iκ x̂+ k ẑ]}

=
E0

ω
e−κz [κ sin(kx− ωt) x̂+ k cos(kx− ωt) ẑ]
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(e) Grind through the equations:

∇ · E =
∂

∂y
Ey = 0

∇× E = κE0e
−κz cos(kx− ωt) x̂− kE0e

−κz sin(kx− ωt) ẑ = −
∂

∂t
B

∇ ·B =
∂

∂x
Bx +

∂

∂z
Bz = 0

∇×B = (k2 − κ2)
E0

ω
e−κz sin(kx− ωt) ŷ

Here, note that k2 − κ2 = (n2ω/c)
2 = ω2µ2ϵ2. So

∇×B = µ2ϵ2E0ω e−κz sin(kx− ωt) ŷ = µ2ϵ2
∂

∂t
E

(f) Poynting vector:

S =
1

µ2

E×B

=
E2

0

µ2ω
e−2κz[k cos2(kx− ωt) x̂− κ sin(kx− ωt) cos(kx− ωt) ẑ]

Averaging, ⟨cos2(kx−ωt)⟩ = 1
2
and ⟨sin(kx−ωt) cos(kx−ωt)⟩ = 0, so

I = ⟨S⟩ =
E2

0k

2µ2ω
e−2κz x̂

Nothing is transmitted in the z-direction.
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