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Exponential decays

An important kind of relationship between two quantities is when one vari-
able depends on the number e raised to the power of the other variable. If
f is the dependent variable and x is the independent variable, then such a
relationship would look like this:

f = f0 e
x/x0 ,

where f0 and x0 are constants. The number e is unitless, and the exponent
must also be unitless.

Such a relationship is called an exponential relationship. Exponential
relationships occur whenever the rate at which something changes is propor-
tional to however much of that something there is. For example, if you want
to make simple model describing the amount of bacteria there is in a petri
dish at a particular time, the amount would depend on time exponentially,
since the rate at which new bacteria appear is proportional to how many
there already are.

You may have noticed that when you take a hot drink outside on a cold
day, it cools down rapidly at first, and then more slowly as the temperature
of the drink gets closer and closer to the temperature of the surroundings.
This is characteristic of an exponential relationship—the rate at which the
temperature of the drink changes at a particular moment depends on the
current temperature difference between the drink and the surroundings at
that particular moment. Let ∆T be the temperature difference between the
drink and the surroundings: ∆T = Tdrink − Tsurroundings. Then a simple model
for cooling might be:

∆T = ∆T0 e
−t/τ
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PART 1: MAKE SURE YOU UNDERSTAND

where ∆T0 is the temperature difference at time t = 0, and τ is a constant
with units of time. Assuming our model is correct, if you graph ∆T versus t,
you will not get a straight line. There is, on the other hand, something you
could graph in this situation which would give a straight line:

∆T = ∆T0 e
−t/τ

∆T

∆T0

= e−t/τ

ln
(
∆T

∆T0

)
= − t

τ

ln∆T − ln∆T0 = − t

τ

ln∆T = ln∆T0 −
t

τ

This means that if you graph the natural log of the temperature difference
versus time, ln∆T versus t, you should get a straight line, the slope of which
is equal to −1/τ . Furthermore, this line should cross the “ln∆T = 0” axis
at the value ln∆T0. Here, τ is a time constant which has to do with the
properties of the object that is cooling, and of the interface between that
object and the surroundings. Let’s call τ the time constant for the system.
If τ is very big, then it will take a long time for the object to cool. If τ is very
small, then the object will cool very quickly. But in both cases the object
will cool exponentially!

Part 1: Make sure you understand

To make sure you understand the model described above, answer the fol-
lowing questions before you take any data. Suppose that at time t = 0,
the temperature of the object was 100◦C. Furthermore, suppose that the
temperature of the surroundings was 20◦C:

1. What is ∆T0?

2. As time passes, will ∆T increase, decrease, or stay the same?

3. After a very, very long time, what will ∆T be, for all intents and
purposes?

4. Just to get a feel for what exponential decays look like, make graphs
of the function e−t/τ for values of τ = 1, 2, 3. Put them all on the same
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PART 3: GRAPHICAL INTERPRETATION

graph, and make sure that the horizontal axis is the t-axis. Graph the
decays only for t > 0.

5. On your three exponential decay graphs, identify at what t-value the
function becomes e−1 ≈ 0.37. What, therefore, does τ mean?

To hand in for part 1

Answers to all questions.

Part 2: Heating and cooling the object

Check the room temperature in the region where you are going to let your
object cool. Call it T surroundings and write it down.

Take an aluminum cylinder with a hole in it, put a thermometer into the
hole, and place it on a hot plate. Turn the hot plate up to high, and wait for
the temperature to go just above 100◦C. Then remove the cylinder from the
hot plate, turn off the hot plate and unplug it. Wait for about two minutes
to give the thermometer time to adjust.

The temperature, T object, should start dropping. After it has started drop-
ping, set the stopwatch at zero, and at that moment note the temperature
of the thermometer. Henceforth, note time on the stopwatch every time the
thermometer reads an exact degree, such as 93.0◦C, 92.0◦C, and so forth. Do
this for approximately twenty-five minutes.

Find ∆T0. Note that this is a single number: ∆T0 is the initial tempera-
ture difference, which is ∆T at time t = 0.

Then, for each data point with t > 0, find ∆T .

To hand in for part 2

All measurements: T surroundings, and T object and t for each data point. Together
with that, for each data point, indicate ∆T .

Part 3: Graphical interpretation

Graph ∆T versus t from the data you collected. Is the shape of the graph
what you expected? Graph ln∆T versus t. Assuming it is a straight line,
find the slope of the best-fit line, and from that find τ for this system. Note
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PART 3: GRAPHICAL INTERPRETATION

that if you’re using Excel, and it gives you only one or two significant figures
on the slope, you will need to adjust the Trendline parameters to increase
the number of digits.

Now, what does τ mean—what is its significance? To begin answering
this question, start with another question: what are the units for τ?

Also ask yourself: Is the relationship your graph shows perfectly lin-
ear? Or is there a small but systematic deviation from linearity? If you
see something interesting—which may be an error or a sign of something
interesting—ask me what might be happening.

To hand in for part 3

Two graphs, result for τ , and your interpretation of what τ means.
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