1. (40 points) Write $\sum \vec{F} = m\vec{a}$ for a damped harmonic oscillator (As in Assignment 1) with an external, time-dependent driving force, $F_{ext}(t) = F_0 e^{i\omega t}$. Solve for $x(t) = Ae^{i\omega t}$ and find A.

Answer: Adding the forces leads to a differential equation:

$$m\frac{d^2}{dt^2}x + b\frac{dx}{dt} + kx = F_0e^{i\omega t}$$

Plugging in the exponential solutions for x(t), we get

$$-m\omega^2 A e^{i\omega t} + ib\omega A e^{\omega t} + kA e^{i\omega t} = F_0 e^{i\omega t} \quad \Rightarrow \quad A\left(-m\omega^2 + ib\omega + k\right) = F_0$$

Therefore

$$A = \frac{F_0}{-m\omega^2 + ib\omega + k}$$

2. (30 points) Sketch a graph of |A| vs ω . Is there resonance here as in the undamped oscillator? What strikes you as different in the damped case?

Answer: For a complex number z, $|z|^2 = zz^*$, where z^* is its complex conjugate.

$$|A| = \sqrt{\frac{F_0}{-m\omega^2 + ib\omega + k} \frac{F_0}{-m\omega^2 - ib\omega + k}} = \frac{F_0}{\sqrt{(k - m\omega^2)^2 + b^2\omega^2}}$$

If you plot this, you will notice that |A| goes through a maximum, just as in the undamped case. The energy loss associated with the damping when b > 0, however, prevents $|A| \to \infty$; the resonance is a mere maximum.

3. (30 points) The maxima and minima of $|A|(\omega)$ can be obtained by finding the derivative of |A| with respect to ω and the values of ω where this derivative is zero. Find these maxima and minima. Check whether you get the undamped SHO results when b=0.

Answer: Do the derivative:

$$\frac{d}{d\omega} \left(\frac{F_0}{\sqrt{(k - m\omega^2)^2 + b^2 \omega^2}} \right) = -\frac{F_0}{2} \left[(k - m\omega^2)^2 + b^2 \omega^2 \right]^{-3/2} \left[2(k - m\omega^2)(-2m\omega) + 2b^2 \omega \right]$$

For this to be zero,

$$\left[2(k-m\omega^2)(-2m\omega)+2b^2\omega\right]=0 \quad \Rightarrow \quad \omega=0 \quad \text{or} \quad \omega=\sqrt{\frac{1}{m}\left(k-\frac{b^2}{2m}\right)}$$

When b=0, we get $\omega=\sqrt{k/m}$, which is the resonant frequency for an undamped SHO.