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1. (50 points) Calculate the electric field of a solid flat disk of radius R with uniform
surface charge density σ, as measured at a height z above the center of the disk. (For
a bit of surface area dA, the bit of charge is dq = σdA.) Hint: Divide up the disk into
infinitesimally thin rings and integrating up the electric field of the rings, using the ring
result we obtained in class.

Take the limit R→∞ and verify that you get the result for an infinite plane, which is
~E = ±σ/2ε0 ẑ. (± depending on whether you’re above or below the plane.)

Answer: Each ring of radius r will have area dA = 2πrdr and charge dq = σ(2πrdr).
For z > 0, it produces an electric field
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which is as it should be.

2. (50 points) Calculate the electric field of a solid flat square of side length b with uniform
surface charge density σ, as measured at a height z above the center of the square. (For a
bit of surface area dA, the bit of charge is dq = σdA.) Hint: Divide up the disk into thin
strips (lines) along the x-axis and integrating up the electric field of the lines, using the
line result we obtained in class.

Take the limit b→∞ and verify that you get the result for an infinite plane, which is
~E = ±σ/2ε0 ẑ. (± depending on whether you’re above or below the plane.)

Answer: Each strip of length b, centered at y = 0 and −b/2 ≤ x ≤ b/2, will have area
dA = b dx and charge dq = σ(b dx). For z > 0, it produces an electric field
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Due to symmetry, the total Ex = 0, so the result will be
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ẑ

This is ugly. But when b→∞, it gives the proper limit:
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