Solutions 10; Phys 191 Name

When you include time-dependence, quantum wave functions are solutions to the Schrodinger

equation:
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The Hamiltonian operator H is the total energy. With a 1D particle in a box, that’s just
the kinetic energy: H = K. All quantum states can be expressed as a superposition of
the energy eigenfunctions we have found before. Say your wave function combines the first
and second energy levels:

U(z,t) = N [t (2)e™" + ithy(w)e ]

Here, 1), refers to the nth energy eigenfunction and w,, = K, /h. N is a normalization
constant.

1. (30 points) Show that ¥ satisfies the Schrodinger equation. (Plug it in.)
Answer:
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= N [Kithi(z)e ™" + i Ko (x)e "]
Notice that 251, = —(nm/L)*, = —2mK,1,/h?. Therefore,
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These are the same, so Schrodinger’s equation is satisfied.

2. (20 points) You know that the 1, are normalized:
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Show that v; and ¥y are orthogonal:
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Answer:
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3. (50 points) Find N, the normalization constant.

Answer: Normalization means that
/ der U* = N*N/ dz [0} ()" — s (x)e™?"] [thr(z)e ™ + ig(2)e™?] =1
0 0

There are four integrals to do. We can use normalization or orthogonality for all.
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