
Phys 191 Solutions 11: Position expectation value

First, a couple of integrals we will need, and a trick to do them. Let’s call
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With α = nπ, where n 6= 0 is an integer, einπ = (−1)n. Therefore∫ L

0
dx eiαx/L =

L

inπ

(
einπ − 1

)
=

L

inπ
((−1)n − 1)

∫ L

0
dx x ei2nπx/L =

L2

nπ

[
1

nπ
((−1)n − 1)− i(−1)n

]
This will allow us to do integrals like
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If n = m, Xnn = L2/4. If n + m is even then so is n−m, and we get Xnm = 0. If n + m
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You have a particle in a 1D box with 0 ≤ x ≤ L, in the same state Ψ as in Assignment 10:
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1. Find 〈x〉, the expectation (average) value of position in this state:
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Answer: Writing it out,
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2. Your result should remind you of a classical particle bouncing back and forth between
the boundaries of the box. What is the frequency of this motion?

Answer: As seen above, the angular frequency is

ω = ω2 − ω1 =
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