Puys 191 Exam 3 Solutions

1. (50 points) The Schrodinger equation for a free particle in 2D is
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(a) Find out whether this equation is invariant under rotations, such that
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Answer: Using 2’ = xcosf + ysinf and iy = ycosf — xsin b,
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Doing the derivative twice,
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When we add the second derivatives, the mixed partial derivative terms will cancel
out, and
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Therefore, the Schrodinger equation for a free particle is invariant under rotations.

(b) Find out whether this equation is Lorentz invariant, such that
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Remember that
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Answer: This is obviously not going to work, because the equation has second space
derivatives and the first time derivative. Using ct’ = yct — fyx and 2’ = —fyct + vz,
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Now the z-derivatives:
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The overall equation ends up as
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There are no cancellations. The Schrodinger equation for a free particle is not Lorentz
invariant!

2. (50 points) You have a particle in a 1D box with 0 < x < L, in the same state ¥ you
had in Assignment 10:
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(a) Find (p), the expectation (average) value of momentum in this state:
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Hint: Start with the known integral
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That’s all the integration you will need to do.



Answer: We know that I(nm) = ((—1)" — 1)L/inm, which is L for n = 0, and
otherwise zero for even n and —2L/inm for odd n. The integrals we need to perform
will be

L
P, = ; dx sin (T) cos (mzx)
_ mﬂ'a:/L _ —inmz/L\ — ( _immz/L —immz/L
= / dx e ) 5 (e +e )

= i(n+m)mrz/L i(n—m)rz/L _ _i(m—n)rz/L _ _—i(n+m)mz/L
5 / dx ( +e e e )

= St m)m) £ 1 (= m)m) — I (m = n)m) — I (~(n 4+ m))]

For n &= m even, P,,, = 0. For n £ m odd,
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Now for our expectation value:
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b) For a classical particle, p = m<%z. You can’t do that for a quantum particle. But
dt

you can check if (p) = m(z). Is this so?

Answer: Checking:
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So it works!




