
Phys 191 Exam 3 Solutions

1. (50 points) The Schrödinger equation for a free particle in 2D is

ih̄
∂Ψ

∂t
= − h̄2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)

(a) Find out whether this equation is invariant under rotations, such that
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Answer: Using x′ = x cos θ + y sin θ and y′ = y cos θ − x sin θ,
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Doing the derivative twice,
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Next,
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When we add the second derivatives, the mixed partial derivative terms will cancel
out, and
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Therefore, the Schrödinger equation for a free particle is invariant under rotations.

(b) Find out whether this equation is Lorentz invariant, such that
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Answer: This is obviously not going to work, because the equation has second space
derivatives and the first time derivative. Using ct′ = γct−βγx and x′ = −βγct+γx,
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Now the x-derivatives:
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The overall equation ends up as
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There are no cancellations. The Schrödinger equation for a free particle is not Lorentz
invariant!

2. (50 points) You have a particle in a 1D box with 0 ≤ x ≤ L, in the same state Ψ you
had in Assignment 10:
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]
(a) Find 〈p〉, the expectation (average) value of momentum in this state:
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Hint: Start with the known integral
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That’s all the integration you will need to do.



Answer: We know that I(nπ) = ((−1)n − 1)L/inπ, which is L for n = 0, and
otherwise zero for even n and −2L/inπ for odd n. The integrals we need to perform
will be
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Now for our expectation value:
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(b) For a classical particle, p = m d
dt
x. You can’t do that for a quantum particle. But

you can check if 〈p〉 = m d
dt
〈x〉. Is this so?

Answer: Checking:
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So it works!


